
Robert Patro
Graduate Student

Department of Computer Science,

Institute for Advanced Computer Studies,

University of Maryland,

College Park, MD 20742

e-mail: rob@cs.umd.edu

John P. Dickerson
Research Assistant

Institute for Advanced Computer Studies,

University of Maryland,

College Park, MD 20742

e-mail: johnd@umiacs.umd.edu

Sujal Bista
Graduate Student

Department of Computer Science,

Institute for Advanced Computer Studies,

University of Maryland,

College Park, MD 20742

e-mail: sujal@cs.umd.edu

Satyandra K. Gupta
Professor

Fellow ASME

Department of Mechanical Engineering,

Institute for Systems Research,

University of Maryland,

College Park, MD 20742

e-mail: skgupta@umd.edu

Amitabh Varshney
Professor

Department of Computer Science

Institute for Advanced Computer Studies

University of Maryland

College Park, MA 20742

e-mail: varshney@cs.umd.edu

Speeding Up Particle Trajectory
Simulations Under Moving Force
Fields using Graphic Processing
Units
In this paper, we introduce a graphic processing unit (GPU)-based framework for simu-
lating particle trajectories under both static and dynamic force fields. By exploiting the
highly parallel nature of the problem and making efficient use of the available hardware,
our simulator exhibits a significant speedup over its CPU-based analog. We apply our
framework to a specific experimental simulation: the computation of trapping probabil-
ities associated with micron-sized silica beads in optical trapping workbenches. When
evaluating large numbers of trajectories (4096), we see approximately a 356 times
speedup of the GPU-based simulator over its CPU-based counterpart.
[DOI: 10.1115/1.4005718]

1 Introduction

The simulation of particle movement under general force fields
is of interest across many scientific disciplines. For example, bio-
chemists may wish to model stochastic diffusion of glutamate
receptors [1], while financial analysts may attempt to simulate
point estimates of stock prices based on stochastic models [2]. In
this paper, we present a framework to simulate such general parti-
cle movement under user-defined force fields. We apply this
framework to the task of manipulating micro and nanoscale com-
ponents using an optical force field.

Micro and nanoscale components can be used to exploit new
phenomena that take place at the small scale [3,4]. Potential appli-
cations of such small components include biosensors, electronic
components, photonic devices, solar cells, and batteries [5,6]. In
order to construct useful devices, micro and nanoscale compo-
nents need to be assembled together. Assembling small compo-
nents to make functional devices remains a challenge despite
rapid advances in imaging, measurement, and fabrication at the
small scale. Two types of assembly processes are possible at the
small scale. The first type of process is self-assembly [7,8]. This
process is useful for large scale production. The second type of
process is directed assembly. This process is useful for prototyp-

ing new design concepts, small scale production, device repair,
and creating templates for certain types of self-assembly
processes. In this paper, we limit ourselves to directed assembly
processes. A number of manipulation techniques for directed as-
sembly of small components have emerged.

In order to manipulate a small component, the appropriate opti-
cal, electrostatic, or magnetic field (i.e., trap) needs to be created
to trap the component. The field is then controlled to move the
component. In this paper, we focus on the optical force fields and
traps associated with them. Optical trapping takes place in a flu-
idic workspace. The interaction between the optical field and the
component is stochastic in nature, due to the Brownian motion of
the component, as well as the presence of uncertainty in the com-
ponent location as a result of sensor errors. Unfortunately, the off-
line planning approach that works well at the macroscale does not
work at the small scale. To cope with the stochastic nature of the
problem, automated microscale assembly requires a real-time and
automated planning paradigm that takes actions based on the esti-
mated state of the workspace in a feedback loop [9].

In order to develop automated, real-time planning algorithms,
we need to develop a fundamental understanding of the interac-
tion of components with trapping fields. For example, we need to
understand and characterize trapping probability, trap reliability,
and trap robustness. The knowledge of the trapping probability
will enable us to position the optical trap close enough to the com-
ponent of interest so that it gets trapped. Moreover, any other
component that drifts close enough to the optical trap, such that

Contributed by Computers and Information Division ASME for publication in the
JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript received
June 14, 2011; final manuscript received October 10, 2011; published online May
21, 2012. Assoc. Editor: Bahram Ravani.

Journal of Computing and Information Science in Engineering JUNE 2012, Vol. 12 / 021006-1
Copyright VC 2012 by ASME

Downloaded 22 May 2012 to 128.8.120.3. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

its trapping probability exceeds a certain threshold value, is a
potential or imminent source of unintended trapping. Thus, appro-
priate collision prevention schemes need to be applied in such
cases to avoid losing the trapped component. Under different
operating conditions, components interact qualitatively differently
with the trap. Unfortunately, the parameter space that describes
different operating conditions is very large. Hence, simulation is
the only viable option for characterizing the interactions between
the trap and the component to facilitate real-time planning.

This paper presents a GPU-based method to simulate the trajec-
tory of particles under a force field. The method described in this
paper is able to handle time varying force fields. The accuracy of
computation depends on the accuracy of the force field. We illus-
trate the usefulness of this method by showing how it can be used
to estimate trapping probabilities for moving optical traps. This
new method presents considerable computational improvements
over our previous approach to conducting CPU-based simulations
for estimating trapping probabilities. The work presented in this pa-
per enables fast computation of trapping probabilities. Faster com-
putation of trapping probabilities presents three main advantages.
First, it enables exploration of a much larger parameter space.
Hence, it improves our understanding of trapping physics. Second,
fast computation of trapping probabilities eliminates the need for
the use of metamodeling during the particle transport planning.
Finally, faster computation enables more simulation runs, and
hence, we get better estimates of the trapping probability.

2 Related Work

Since the initial discovery of optical gradient forces [10] and
subsequent invention of optical tweezers [11], the use of optical
traps to manipulate micron-sized objects has been widespread.
Simulations of the optical traps play an important role in utilizing
optical tweezers as assembly tools at the micro and nanoscale [9].
Early work in this area focused on trap and particle interactions
and models were developed to estimate optical forces acting on
spherical particles. As a part of our recent prior work, we devel-
oped a model to simulate the trajectory of a spherical particle
under optical forces [12]. This model was implemented on a CPU
and used to generate trapping probability estimates by conducting
off-line simulations. A metamodel was developed to quickly
query trapping probability estimates during the automated path
planning [9]. CPU-based simulations are very time consuming.
Hence, in an offer to speed up the simulation process, we success-
fully implemented Brownian motion simulation on GPU [13]. The
current paper builds on our previous work and presents a new
GPU-based method for computing particle trajectories under opti-
cal force fields. In computing particle trajectories, it combines
both the influence of Brownian motion and an optical force field
in a unified GPU-based framework.

Graphics processors have evolved over the last decade from a
fixed-function (rendering-only) pipeline to a highly flexible pro-
grammable pipeline. One of the application areas that has received
significant attention in this evolution has been physically-based
simulations due to their application to simulation of environmen-
tal effects for 3D games [14]. Some of the earliest work in this
area involved physically-based wave simulations on 2D lattices
[15]. More general Lattice-Boltzmann 3D simulations for fluids
and gases were later implemented on GPUs by Li et al. [16,17].
Other fluid simulations on GPUs include work on Navier-Stokes
equations for incompressible fluids (see review in this area by
Harris [18]) as well as Euler-equations-based dynamics of ideal
gases (Hagen et al. [19]). Work on fluid simulation has also been
extended to deal with obstacles [18,20–23]. Visualization of flows
on GPUs has been addressed through line-integral convolution
and Lagrangian-Eulerian advection [24–26]. Recent work by Juba
and Varshney [27] shows the suitability of the GPUs for stochastic
calculations.

Initial work has been done in porting optical trapping simula-
tions to graphics processors; however, to our knowledge, no

GPU-based trapping probability estimation work exists. [28] and
[29] simulate the manipulation of glass microspheres within a
holographic laser testbed. Due to accelerated two-dimensional Fast
Fourier Transform (FFT) calculations, both show significant com-
putational speedups over their CPU-based counterparts. Similar
results are available for arbitrarily positioned dual-beam (“twin”)
traps [30]. Using a model similar to ours, Balijepalli et al. [13] pro-
vides an accuracy and error analysis of results from both CPU and
GPU, along with experimental validation of the simulation.

3 Calculating Trapping Probabilities

Both fully- and semi-autonomous operation of optical tweezers
require the capability to trap a particle and plan its path through
the workspace; avoiding collisions with other components in real-
time. The probability that a given particle will be trapped within a
predictable spatial region about the laser beam focus, or trapping
probability, is a critical aspect of this real-time motion planning
problem. As it is infeasible to determine trapping probabilities
through real-world experiments due to a large parameter space
(including, for example, initial particle position, neighboring
workspace component existence, motion of laser), we have devel-
oped a computational framework in which trapping probabilities
can be determined through optical tweezers simulation.

3.1 Simulated Particle Motion. Our initial code operates on
glass and silica microspheres, as these are well-studied in the liter-
ature [31]. Furthermore, properties of these spheres can be accu-
rately modeled using theoretically- and experimentally-verified
equations.

In general, any moving component in the workspace will expe-
rience hydrodynamic forces coupled with a rapidly fluctuating
force, the result of frequent and numerous collisions with sur-
rounding liquid molecules. We can model these closely connected
forces using Langevin’s equation [32,33]. We use model given in
Ref. [13]. Given a velocity V, we describe the change in velocity
over time as

dVðtÞ
dt
¼ � c

m
VðtÞ þ n

m
CðtÞ (1)

The hydrodynamic forces over time (t), are a function of veloc-
ity (V), mass (m), and drag (c). The drag coefficient c is given by
Stokes’ Law [34] as c¼ 6pgr, with g representing the fluid viscos-
ity as a function of temperature and r representing the radius of
the silica sphere, in this case. The stochastic, rapidly fluctuating
force C is scaled by a constant n satisfying the fluctuation-
dissipation theorem [35], which is defined as n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2cKBT
p

, with
KB representing Boltzmann’s constant [36]. The stochastic term C
prevents a direct analytic solution to Langevin’s equation; as
such, our framework uses a finite difference expression of Eq. (1).
The stochastic term C is substituted by a appropriately scaled nor-
mal distribution N(0,1=dt) where dt is the finite time step.
The term 1=

ffiffiffiffi
dt
p

is absorbed into a scaling constant as described in
Ref. [13].

We combine the finite difference form of Langevin’s equations
with an enumeration of all other forces affecting a silica sphere in
the workspace to yield Eq. (2). The external force factor Fext

includes the constant (for a sphere) forces of gravity and buoy-
ancy, as well as the all-important optical trapping force applied by
the laser to the particle

Aðtþ dtÞ ¼ � c
m

VðtÞ þ 1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2cKBT

dt

r
Nð0; 1Þ þ Fext

m
(2)

We explicitly integrate Eq. (2) to obtain a simulation of particle
movement over time. In practice, the most popular explicit inte-
gration techniques include fourth-order Runge-Kutta methods
[37], the Gear predictor-corrector method [38], and second-order

021006-2 / Vol. 12, JUNE 2012 Transactions of the ASME

Downloaded 22 May 2012 to 128.8.120.3. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

“velocity” Verlet integration [39]. Each is appropriate in certain
situations; as such, we use Verlet integration (Eqs. (3) and (4))
due to its conservation of energy at larger time steps and ease of
computation, as discussed in Ref. [13]. Since the time step has a
direct effect on the number of iterations required to run a simula-
tion (and thus its running time), we are interested in maximizing
time step size while maintaining tight error bounds

Xðtþ dtÞ ¼ XðtÞ þ VðtÞdtþ 1

2
AðtÞdt2 þ Oðdt4Þ (3)

Vðtþ dtÞ ¼ VðtÞ þ Aðtþ dtÞ þ AðtÞ
2

dtþ Oðdt2Þ (4)

Given velocity V(t) and external force factor Fext, we compute
the acceleration A(tþ dt) at the next time step using Eq. (2). From
here, the velocity Verlet method provides the next position,
X(tþ dt), and velocity, V(tþ dt), in a single pass.

The characteristic time scale of our entire model is given by the
relaxation time m

c , with c¼ 6pgr the drag coefficient of Stokes’
equations; this is the time needed for a particle’s initial velocity to
converge to thermal equilibrium. In our experiments, the numeri-
cal integration time step dt is set to the nearest multiple of 100 ns
such that dt� m

c . Choosing such a small dt provides an opportu-
nity to observe interesting nonequilibrium behavior in the simula-
tion. Furthermore, this small time step decreases maximum error
in both velocity and position, bounded by the velocity Verlet to
O(dt2) and O(dt4), respectively.

Our particle simulation framework accepts either a continuous
or discretely sampled force field. In our experiments, we choose
to represent the optical field discretely. Force values are provided
by numerically integrating the basic scattering and gradient forces
of radiation (see Ashkin’s seminal paper [11]). Such integration is
typically done by tracing representative rays of light from the
laser position through the workspace to the laser focus – and pos-
sibly through microspheres in the workspace. By tracing the
reflection and refraction of these simulated rays, a reliable esti-
mate of both the scattering and gradient forces can be computed.
In our prototype implementation, we rely on code written in Ref.
[12] to obtain these forces.

3.2 Trapping Probability Estimates. To estimate trapping
probabilities, particle trajectory simulation is performed multiple
times at a given point in the parameter space. The simulation is
conducted by starting the particle at the designated location. The
trapping probability is estimated as a ratio of the number of times
the sphere gets trapped by the laser beam over the total number of
trials.

Trapping is a complex phenomenon due to the Brownian
motion of the particles. If a beam is held stationary for an indefi-
nite period of time, then particles far away from the beam are
likely to wander into the beam due to Brownian motion and even-
tually be trapped. Particles continue to exhibit Brownian motion
even after they have been trapped. Therefore, trapped particles
eventually jump out of the trap at practically useful laser powers.
Many different notions of trapping probability can be defined
based on the context. For the purpose of this paper, we are mainly
interested in a notion of trapping probability which is relevant
from the point of view of path planning. In this application, the
laser beam continues to move. Hence, the time available for trap-
ping is relatively small. For the purpose of this paper, we have
done all trapping probability estimates for fixed finite period of
time. Methodology presented in this paper can be easily used to
compute trapping probability as a function of the available trap-
ping time.

We have assumed that the Brownian motion inside the trap is
negligible. Hence, the mean time to escape of the trap is quite
large with respect to the planning horizon. Therefore, we do not
account for the possibility of a trapped particle escaping the trap
in our calculations. The simulation infrastructure has a built-in

capability to simulate Brownian motion under the force field.
Therefore, it can automatically account for the situations where a
particle will escape the trap if the simulation is performed over a
long period of time. For the figures produced in this paper, we
assume a particle to be trapped if the probability of a particle
escaping the laser within 100 ms is less than 1

N, where N is the
number of simulated trajectories per grid position.

4 Massively Parallel Simulations

4.1 Overview. We leverage the massively parallel architec-
ture of the GPU to expedite the calculation of trapping probabil-
ities over a wide range of locations relative to the focal point of
the laser. In particular, we consider a discrete grid, G¼f[yi,zj]g of
particle locations.

As detailed in Sec. 3, the particles we are interested in trapping
undergo motion governed by the Langevin equation; which con-
tains a stochastic component modeling the Brownian motion of the
particles. Thus, a reliable estimate of the trapping probability at a
particular grid cell, [y,z], can only be obtained by repeatedly simu-
lating the trajectory of a particle intially placed at [y,z]. To obtain a
95% confidence interval of less than 60.03125 on our estimated
trapping probability, we simulate the particle trajectories 1024
times at each grid cell. The greater the degree of confidence we
require, the more trajectories we must simulate for each cell on the
simulation grid G. This is a highly computationally intensive, but
inherently parallel process. In particular, the estimation of the trap-
ping probability at each grid cell can be done independently.

Though the parallel nature of the problem is straightforward,
consideration is still required if we are to achieve optimal perform-
ance on current hardware. In all of the experiments detailed below,
we have performed the trapping probability estimates on an Nvidia
Tesla S1070; a general-purpose GPU computing oriented compute
unified device architecture (CUDA) capable device. A diagram of
the CUDA architecture—how the threads of execution and memory
are arranged – is provided in Fig. 1. Also, an overview diagram of
our system showing the distribution of work and the flow of data
between the host and the device (GPU) is shown in Fig. 2.

4.1.1 GPU Versus CPU implementations. While this paper
focuses on a GPU implemetation of the trapping probability calcu-
lation, we wish to draw attention to the fact that it is the massively
parallel nature of this computation, and not the specific GPU imple-
mentation, that is of the broadest interest. In particular, the CPU
implementation with which we contrast our GPU implementation,
while reasonably efficient, still has many avenues for optimization.
Specifically, we compare GPU performance against a single-
threaded CPU implementaion that does not take advantage of vec-
torized instructions. While it is certainly true that the CPU imple-
menation could be improved to offer better performance, the most
important observation is the rate at which the simulation results
scale. Since each simulation can be performed independently, the
overall computation of trapping probabilities is massively data par-
allel. Thus, while the performance gap between the two implemen-
tations can undoubtedly be shrunken somewhat, the data-parallel
nature of the problem ensures that scalable parallel architecture of
the GPU will continue to provide a very significant benefit.

4.2 Data Structures. There are two obvious ways to parallel-
ize the computation of trapping probabilities: among grid cells or
among particles. We choose the latter of these two as we feel it
offers more flexiblity and allows us to maximally utilize the GPU.
There are four major sources of input to the simulation kernel:

(1) an array of particles
(2) a force grid
(3) a set of fundamental physical constants
(4) a stream of pseudorandom numbers

Care must be taken to ensure that each of these input sources is
amenable to GPU computation. Each particle maintains a position,

Journal of Computing and Information Science in Engineering JUNE 2012, Vol. 12 / 021006-3

Downloaded 22 May 2012 to 128.8.120.3. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

velocity, acceleration, and state variable. The position, velocity
and acceleration are given as vectors in R3, while the state vari-
able is a simple boolean value which is examined to determine if
simulation for this particular particle should continue. Thus, we
can represent each particle as a tuple pi¼ (xi, vi, ai, si), and the array
of N particles simply becomes P¼fpig0�i<N. While this is logi-
cally convenient, it is much more efficient to store the particles as a
structure of arrays (SoA) rather than the array of structures (AoS)
detailed above. Hence, we consider the array of particles as
P¼fX, V, A, Sg, where X, V, A, and S are each arrays of length N
storing in their ith position the respective field for the ith particle.
Because of the manner in which the GPU threads access memory,
the SoA approach allows coalesced memory access for groups of
threads, and hence, requires fewer memory reads.

The force grid is a 2 D array of values, representing a discrete
sampling of the force function, F : R2 ! R2, which maps input
grid positions to output force vectors. In our case, since F is fairly
well behaved, it suffices to take a discrete uniform sampling of
this function at intervals of 0.25 lm for all 0� y� 20 and
�20� z� 8. The value at all intermediate locations is estimated
by means of a bilinear interpolation of the values at the nearest
sample positions. We choose to store our discrete force grid, F, as
a texture. This results in two main benefits. First, access to texture
memory is cached, resulting in faster average access times for
looking up force values for spatially coherent particles. Second,
the GPU has dedicated hardware for performing bilinear interpo-
lation. Thus, by storing F as a texture, we benefit both from faster
access to the force values as well as hardware accelerated bilinear
interpolation.

We also require access to some physical constants to compute
particle trajectories. Storing these constants in the global GPU
memory makes access, which is required for each simulation
timestep, expensive. However, storing local copies of all of these
constants is highly wasteful. In fact, all CUDA capable devices
have a special read-only segment of memory reserved for con-
stants, for which access is cached. Utilizing this constant memory
allows us fast yet global access to the set of physcial constants
required to evalute the governing equations of the particles’
dynamics.

Finally, the simulation requires a stream of pseudo-random
numbers to model the Brownian motion of the particles. To pro-
vide these random numbers, we adapt the GPU implementation
used by Meel et al. [40]. Each particle maintains a state which
determines its current position in the pseudo-random progression.
During the actual simulation, uniformly distributed pseudo-
random numbers are generated on demand by a GPU kernel and
subsequently transformed into random samples from the standard
normal distribution by mean of the Box-Muller transform.

By making careful considerations in the layout and structure of
our data, and by exploiting the special hardware provided by the
GPUs, we are able to make efficient use of these devices when
parallelizing our estimates of trapping probability.

4.3 Trapping Criteria. Reliably classifying a specific parti-
cle as “trapped” or “not trapped” is necessary to provide accurate
overall trapping probabilities. To accomplish this goal, we provide
a simple parallelizable method that returns, once per particle, a 0
(not trapped) or 1 (trapped) upon termination.

Similar to Ref. [12], the following conditions sufficiently
describe the termination criteria for our method:

(1) Particle falls to the bottom of the workspace! 0.
(2) Particle strays outside the bounds of the force field! 0.
(3) Total experimental time is expended without trapping! 0.
(4) Particle is trapped! 1.

These termination criteria are suppressed in certain situations.
Specifically, criterion 1 is ignored if the particle remains affected
by the laser forces. Furthermore, criterion 2 is suppressed if either
the particle is sufficiently close to the trap focus (as it will be
affected by strong optical gradient forces) or if the laser has non-
trivial horizontal velocity (as the cone of the laser might move to
intersect with the particle).

Criterion 4 returns when, informally, the optical forces
imparted on a particle by the laser effectively overpower all other
acting forces (e.g., Brownian motion, gravity, and buoyancy). For
a stationary laser (velocity v¼ 0), this amounts to a trapped parti-
cle remaining within fixed distance dv

z beneath the laser and

Fig. 1 The CUDA architecture provides for a logical hierarchy of parallelism that maps well to the hardware. The computational
kernel is run in parallel among a large number of threads which are grouped into 1, 2, or 3 dimensional thread blocks. Threads
within a block may communicate using the shared memory or coordinate execution using synchronization primitives. The
blocks are likewise grouped into 1, 2, or 3 dimensional grids. Each thread is able to access its own grid, block and thread
identifiers.

021006-4 / Vol. 12, JUNE 2012 Transactions of the ASME

Downloaded 22 May 2012 to 128.8.120.3. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

distance dv
xy along the X- and Y-axes. For a laser with nontrivial

horizontal or vertical velocity, both dv
z and dv

xy change consider-
ably as a function of both laser velocity and particle size.

The calculation of these trapping boundaries will potentially
change from experiment to experiment due to, for example, an
adjustment in the power of the laser; however, we assume that
such environmental variables will remain static across a single ex-
perimental run. We do expect both the horizontal and vertical
components of the laser’s velocity to change over the course of a
single experiment. As such, we adopt a strategy of one-time com-
putations of radial and axial trapping bounds dv

xy and dv
z for differ-

ent base laser velocities, relying on interpolation to provide
bounds for any velocity.

For a stationary laser, we place 1024 particles at the origin and
execute a version of our full parallel simulation, described in
Sec. 4.4, for 50 ms. Over this time period, all of these particles
fall into the optical trap; our simulation records the variation in
both radial and axial displacement of the particle. Upon termina-
tion, we select the maximum of the maximum radial and axial dis-
placements as our final, stationary trapping bounds. This approach
generalizes to a moving laser through suppression of criterion 2, as
defined above.

4.4 Execution. With the experimental setup fully initialized,
we are ready to perform the massively parallel simulation of
multiple particles on the GPU. For a specific point x* in the
workspace, we perform N¼ 1024 simulations in parallel. Note
that, for each individual simulation run, the return value is a bi-
nomial random variable of 0 (not trapped) or 1 (trapped); thus,
for simulation sample sizes of at least 30 runs, its outcome can
be fit to a Gaussian curve with mean l¼PT, the trapping proba-
bility, and variance r2 ¼ PT ð1�PT Þ

N [41]. For N¼ 1024, this yields
a 95% confidence interval with maximum error of less than
60.03125.

After initializing N particles to the desired starting position x*

and all active lasers to their initial positions and velocities, we
assign each particle and laser to a thread on the GPU. We then
execute Algorithm 4.4.

Algorithm 4.4 computes the final positions of each of the N par-
ticles after some predetermined period of time MAXTIME. The
first loop (Line 1) executes in parallel on the GPU. Line 3 calcu-
lates the current drag force being applied to the particle. As shown
in Eq. (1), the drag force is based on, among other things, a drag
coefficient c. The value of c remains constant throughout the
simulation; as such, our implementation makes use of constant
memory on the GPU to realize significant speedup. The nondeter-
ministic Brownian force is calculated at Line 4 using the stream-
ing GPU-specific random number generator discussed in Sec. 4.1.
Line 5 calculates a summation of forces, including the optical
force F applied by the laser, through a combination of constant
memory and texture memory. Numerical evolution in Line 9
updates the positions of the particles and lasers through velocity
Verlet integration; this already quick method is further sped up
through GPU-specifc “fast” algebraic operations.

When Algorithm 4.4 returns, the host gathers all N final posi-
tions of particles pi for i [[1, N] and lasers l. It then computes the
set of trapped particles, TRAPPED, as follows:

TRAPPED ¼ pijtrappedðpi; l; vlÞf g (5)

In other words, the set of trapped particles, TRAPPED, is the
set of all particles, pi, which, at the termination of the simulation,
adhere to the trapping conditions of lasers ‘j [l which are moving
with corresponding velocities v‘j

.
From this, the probability (with 95% confidence interval of

60.03125) that a particle starting from location x* will be trapped
by a laser with velocity vl within time period MAXTIME is

PT ¼
TRAPPEDj j

N
(6)

Algorithm 4.4 Parallel particle evolution on the GPU

Input: Set of active threads, each with pre-initialized particle p
and laser l with velocity v. Time limit MAXTIME.
Output: Positions of particle and laser after MAXTIME.
1: for all active threads (in parallel) do
2: while particle p is not trapped and time t<MAXTIME

do
3: calculate drag force
4: calculate Brownian motion
5: calculate sum of gravity, buoyancy, optical forces
6: if trapped(p,l,v) then
7: break
8: end if
9: second-order velocity Verlet integration to provide

incremental update to velocity, position
10: update position of laser l according to velocity v
11: end while
12: return final positions of p and l
13: end for

5 Results

5.1 Trapping Probabilities. We evaluate the trapping proba-
bility for particles under the effect of both a stationary and moving
laser. The trapping probabilities are estimated on a discrete grid of
positions relative to the focus of the laser. In all of our experi-
ments, we consider a grid whose extents match that of the discrete
laser force grid F. We sample this grid in the y and z directions at
a resolution of 0.25 lm.

Fig. 2 An overview diagram of our system showing the distri-
bution of work and the flow of data between the host and the
device (GPU). Currently, the host is used only to load the initial
simulation parameters and set the initial particle positions. The
device performs the simulation of the particle trajectories and
returns the final positions to the host, which then simply com-
putes the fraction of trapped particles corresponding to each
initial position.

Journal of Computing and Information Science in Engineering JUNE 2012, Vol. 12 / 021006-5

Downloaded 22 May 2012 to 128.8.120.3. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

5.1.1 Trapping Probabilities under a Stationary Laser. Figure 3
illustrates how the probability of trapping a particle varies with
respect to the particle’s distance from the laser in both the y and z
directions, under the influence of a stationary laser. To verify the
accuracy of our trapping probability estimates, we examine how
the estimates computed using our GPU implementation differ
from those computed using a CPU-based implementation of the
same particle dynamics model. Since the underlying governing
equations are the same, and we perform a sufficient number of
simulations (i.e., 1024 per grid position) to ensure 95% confidence
in our probability estimate, we expect to see very little difference
between the two plots. Figure 4 shows the difference in probabil-
ity estimates between the two implementations. The average error
between the CPU and the GPU implementation of the probability
estimate (computed using L2 norm) is 0.00091.

We also examine the difference between probability estimates
computed using single and double precision. We found the aver-
age error (computed using L2 norm) to be 0.00084.

5.1.2 Trapping Probabilities under a Moving Laser. Figures 5
and 6 illustrate how the probability of trapping a particle varies
with respect to the particle’s distance from the laser in both the y
and z directions, under the influence of a moving laser. In particu-
lar, we consider a laser moving with a constant velocity of 0.65
lm m s�1 in the y direction as well as a laser moving with a con-
stant velocity of 0.325 micrometer per sec�1 in the z direction.

5.2 Timing. To obtain a timing comparison between the
CPU-based and GPU-based simulations, we parametrize over the
number of particles. Given a grid spacing of 0.25 lm and a grid
over [0,20]� [�20,þ8], we must test 9744 positions. Assuming
1024 particles per position to achieve a 95% confidence interval

Fig. 5 This plot shows the probability of trapping a particle under the force
exerted by laser moving at a constant velocity of 0.65 lm m s21 in the direction
(1,0), and was generated using the GPU implementation detailed in this paper.

Fig. 4 This plot shows the absolute difference between the
CPU and the GPU implementation of the probability of trapping
a particle under the force exerted by a stationary laser with its
focus at (0,0).

Fig. 3 This plot shows the probability of trapping a particle
under the force exerted by a stationary laser with its focus at
(0,0), and was generated using the GPU implementation
detailed in this paper.

021006-6 / Vol. 12, JUNE 2012 Transactions of the ASME

Downloaded 22 May 2012 to 128.8.120.3. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Fig. 6 This plot shows the probability of trapping a particle under the force
exerted by laser moving at a constant velocity of 0.325 lm m s21 in the direction
(0,21), and was generated using the GPU implementation detailed in this paper.

Fig. 7 The running time required as a function of the number of trajectories calcu-
lated using both the CPU and GPU simulators. The plots have been placed on a
log–log scale. The CPU simulator exhibits exactly the type of linear performance
curve we expect, while GPU performance slowed by less than a factor of 2 between
8 and 4096 trajectories.

Journal of Computing and Information Science in Engineering JUNE 2012, Vol. 12 / 021006-7

Downloaded 22 May 2012 to 128.8.120.3. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

with maximum error of less than 60.03125, this results in roughly
ten million tests. The performance results can be seen in Fig. 7.
As the number of particles increases, so does the benefit of the
GPU-based parallel simulation. At N¼ 4096 particles per grid
cell, the GPU-based simulation is �356 times faster than its CPU-
based counterpart.

6 Conclusion and Future Work

We have introduced a GPU-based framework for massive simu-
lation of particle motion under user-defined force fields. We
applied this framework experimentally to the well-studied prob-
lem of computing the trapping probabilities associated with
micron-sized silica beads in optical trapping workbenches. The
simulator handles both stationary and moving laser-induced force
fields and, due to the highly parallel nature of the problem and ef-
ficient use of the available hardware, exhibits a significant
speedup over its CPU-based analog. In particular, when evaluat-
ing many trajectories (4096), we see approximately a 356 times
speedup of the GPU based simulator over its CPU based counter-
part. This speedup is more than can be accounted for by the
increased processor count on the GPU, and we attribute the extra
performance to the higher memory bandwidth, spatially coherent
caching, and hardware accelerated bilinear interpolation of the
laser force field in the GPU simulator. In particular, this last oper-
ation must be performed in software on the CPU. We believe this
work indicates that GPUs hold great promise in accelerating the
type of compute-intensive simulations that are required when
working with optical tweezers and nanoscale assembly in general.
Often times, the stochastic nature of such simulations leads to a
probabilistic approach involving many independent trials, a setup
whose parallelism uniquely suits the type of high-throughput com-
putation enabled by modern GPUs.

In the future, we are interested in extending this work to deal
with more general types of nanocomponents, perhaps even those
which cannot be defined analytically. We are also interested in
investigating other areas of the optical workbench workflow
where GPUs can be used to accelerate computational bottlenecks
in the process.

Acknowledgment

This work has been supported in part by the NSF grants: CCF
04-29753, CNS 04-03313, CCF 05-41120, and CMMI 08-35572.
We also gratefully acknowledge the support provided by the NVI-
DIA CUDA Center of Excellence award to the University of
Maryland and constructive discussions with David Luebke at
NVIDIA research. Any opinions, findings, conclusions, or recom-
mendations expressed in this article are those of the authors and
do not necessarily reflect the views of the research sponsors.

References
[1] Tolle, D., and Le Novere, N., 2010, “Brownian Ddiffusion of AMPA Receptors

is Sufficient to Explain Fast Onset of LTP,” BMC Syst. Biol., 4(1), p. 25.
[2] Broadie, M., and Kaya, O., 2006, “Exact Simulation of Stochastic Volatility

and Other Affine Jump Diffusion Processes,” Oper. Res., 54(2), pp. 217–231.
[3] Bhushan, B., ed., 2004, Springer Handbook of Nanotechnology, Springer-

Verlag, New York, NY.
[4] Ratner, M., and Ratner, D., 2002, Nanotechnology: A Gentle Introduction to the

Next Big Idea, Prentice-Hall, Upper Saddle River, NJ.
[5] Niemeyer, C., and Mirkin, C. A., eds., 2004, Nanobiotechnology: Concepts,

Applications and Perspectives, Wiley-VCH, Germany.
[6] Wilson, M., Kannangara, K., Smith, G., Simmons, M., and Raquse, B., 2002.

Nanotechnology: Basic Science and Emerging Technologies. Chapman and
Hall/CRC, Boca Raton, FL.

[7] Requicha, A., and Arbuckle, D., 2006, “CAD=CAM for Nanoscale Self-
Assembly,” IEEE Comput. Graph. Appl., 26(2), pp. 88–91.

[8] Peng, T., Balijepalli, A., Gupta, S., and LeBrun, T., 2009. “Algorithms for
Extraction of Nanowire Lengths and Positions From Optical Section Micros-
copy Image Sequence,” J. Comput. Inf. Sci. Eng., 9, p. 041007.

[9] Banerjee, A., Pomerance, A., Losert, W., and Gupta, S., 2010, “Developing a Sto-
chastic Dynamic Programming Framework for Optical Tweezer-Based Automated
Particle Transport Operations,” IEEE Trans. Autom. Sci. Eng., 7(2), pp. 218–227.

[10] Ashkin, A., 1970, “Acceleration and Trapping of Particles by Radiation Pres-
sure,” Phys. Rev. Lett., 24(4), pp. 156–159.

[11] Ashkin, A., Dziedzic, J., Bjorkholm, J., and Chu, S., 1986, “Observation of a
Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett.,
11(5), p. 288.

[12] Banerjee, A., Balijepalli, A., Gupta, S., and LeBrun, T., 2009, “Generating Sim-
plified Trapping Probability Models From Simulation of Optical Tweezers Sys-
tem,” J. Comput. Inf. Sci. Eng., 9, p. 021003.

[13] Balijepalli, A., LeBrun, T., and Gupta, S., 2010, “Stochastic Simulations With
Graphics Hardware: Characterization of Accuracy and Performance,” J. Com-
put. Inf. Sci. Eng., 10, p. 011010.

[14] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.
E., and Purcell, T., 2007, “A survey of general-purpose computation on
graphics hardware,” Comput. Graph. Forum, 26(1), pp. 80–113.

[15] James, G., 2001, “Operations for Hardware-Accelerated Procedural Texture
Animation,” Game Programming Gems 2, Mark DeLoura, ed., Charles River
Media, pp. 497–509.

[16] Li, W., Wei, X., and Kaufman, A. E., 2003, “Implementing Lattice Boltzmann
Computation on Graphics Hardware,” Visual Comput., 19(7–8), pp. 444–456.

[17] Wei, X., Zhao, Y., Fan, Z., Li, W., Qiu, F., Yoakum-Stover, S., and Kaufman,
A. E., 2004, “Lattice-Based Flow Field Modeling,” IEEE Trans. Vis. Comput.
Graph., 10(6), pp. 719–729.

[18] Harris, M., 2005, “Fast Fluid Dynamics Simulation on the GPU,” in SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Courses, ACM, p. 220.

[19] Hagen, T. R., Lie, K.-A., and Natvig, J. R., 2006, “Solving the Euler Equations
on Graphics Processing Units,” International Conference on Computational Sci-
ence, Vol. 3994(2) pp. 220–227, http://www.mendeley.com/research/solving-
euler-equations-graphics-processing-units-5/.

[20] Bolz, J., Farmer, I., Grinspun, E., and Schröoder, P., 2003, “Sparse Matrix Solv-
ers on the GPU: Conjugate Gradients and Multigrid,” in SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers, ACM, pp. 917–924.

[21] Krüger, J., and Westermann, R., 2003, “Linear Algebra Operators for GPU Imple-
mentation of Numerical Algorithms,” ACM Trans. Graphics, 22(3), pp. 908–916.

[22] Liu, Y., Liu, X., and Wu, E., 2004, “Real-Time 3D Fluid Simulation on GPU
With Complex Obstacles,” in Pacific Conference on Computer Graphics and
Applications, IEEE Computer Society, pp. 247–256.

[23] Sander, P., Tatarchuk, N., and Mitchell, J. L., 2006, “Explicit Early-Z Culling for
Efficient Fluid Flow Simulation,” ShaderX5: Advanced Rendering Techniques,
Engel Wolfgang, ed., Charles River Media, Cambridge, MA, pp. 553–564.

[24] Heidrich, W., Westermann, R., Seidel, H.-P., and Ertl, T., 1999, “Applications of
Pixel Textures in Visualization and Realistic Image Synthesis,” I3D ’99: Proceed-
ings of the 1999 Symposium on Interactive 3D Graphics, ACM, pp. 127–134.

[25] Jobard, B., Erlebacher, G., and Hussaini, M. Y., 2001, “Lagrangian-Eulerian
Advection for Unsteady Flow Visualization,” Proceedings of the Conference on
Visualization 2001 (VIS-01), T. Ertl, K. Joy, and A. Varshney, eds., IEEE Com-
puter Society, pp. 53–60.

[26] Weiskopf, D., Hopf, M., and Ertl, T., 2001, “Hardware-Accelerated Visualization
of Time-Varying 2-D and 3-D Vector Fields by Texture Advection Via Program-
mable Per-Pixel Operations,” Vision, Modeling, and Visualization, pp. 439–446.

[27] Juba, D., and Varshney, A., 2008, “Parallel Stochastic Measurement of Molecu-
lar Surface Area,” J. Mol. Graphics Modell., 27(1), pp. 82–87.

[28] Reicherter, M., Haist, T., Zwick, S., Burla, A., Seifert, L., and Osten, W., 2005,
“Fast Hologram Computation and Aberration Control for Holographic
Tweezers,” Optical Trapping and Optical Micromanipulation II, K. Dholakia
and G. C. Spalding, eds., Vol. 5930(1), SPIE, San Diego, CA, USA, http://link.
aip.org/link/?PSI/5930/59301Y/1, p. 59301Y.

[29] Haist, T., Reicherter, M., Wu, M., and Seifert, L., 2006, “Using Graphics
Boards to Compute Holograms,” Comput. Sci. Eng., 8(1), pp. 8–13.

[30] Hermerschmidt, A., Kruger, S., Haist, T., Zwick, S., Warber, M., and Osten, W.,
2007, “Holographic Optical Tweezers With Real-Time Hologram Calculation
Using a Phase-Only Modulating LCOS-Based SL at 1064 nm,” Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6905, p. 7.

[31] Wright, W., Sonek, G., and Berns, M., 1994, “Parametric Study of the Forces
on Microspheres Held by Optical Tweezers,” Appl. Opt., 33(9), pp. 1735–1748.

[32] Gardiner, C., 1985, Handbook of Stochastic Methods, Springer, Berlin.
[33] Langevin, P., 1908, “On the Theory of Brownian Motion,” C. R. Acad. Sci.,

146, pp. 530–533.
[34] Girault, V., and Raviart, P., 1979, “Finite Element Approximation of the

Navier-Stokes Equations,” Lecture Notes in Mathematics, Springer–Verlag,
Berlin, p. 749.

[35] Weissbluth, M., 1989, Photon-Atom Interactions, Academic Press, San
Diego, CA.

[36] Grassia, P., 2001, “Dissipation, Fluctuations, and Conservation Laws,” Am. J.
Phys., 69, p. 113.

[37] Jameson, A., Schmidt, W., and Turkel, E., 1981, “Numerical Solutions of the
Euler Equations by Finite Volume Methods Using Runge-Kutta Ttime-Stepping
Schemes,” AIAA Pap., 1259, p. 1981.

[38] Allen, M., and Tildesley, D., 1990, Computer Simulation of Liquids, Oxford
University Press, USA.

[39] Verlet, L., 1968, “Computer Experiments on Classical Fluids. II. Equilibrium
Correlation Functions,” Phys. Rev, 165(1), pp. 201–14.

[40] van Meel, J., Arnold, A., Frenkel, D., Zwart, S. P., and Belleman, R., 2008,
“Harvesting Graphics Power for MD Simulations,” Mol. Simul., 34, pp. 259–266.

[41] Hines, W. W., Montgomery, D. C., Goldsman, D. M., and Borror, C. M., 2003,
Probability and Statistics in Engineering, 4 ed., Wiley, New York.

021006-8 / Vol. 12, JUNE 2012 Transactions of the ASME

Downloaded 22 May 2012 to 128.8.120.3. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://dx.doi.org/10.1186/1752-0509-4-25
http://dx.doi.org/10.1287/opre.1050.0247
http://dx.doi.org/10.1109/MCG.2006.29
http://dx.doi.org/10.1115/1.3249573
http://dx.doi.org/10.1109/TASE.2009.2026056
http://dx.doi.org/10.1103/PhysRevLett.24.156
http://dx.doi.org/10.1364/OL.11.000288
http://dx.doi.org/10.1115/1.3130784
http://dx.doi.org/10.1115/1.3270248
http://dx.doi.org/10.1115/1.3270248
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1007/s00371-003-0210-6
http://dx.doi.org/10.1109/TVCG.2004.48
http://dx.doi.org/10.1109/TVCG.2004.48
http://www.mendeley.com/research/solving-euler-equations-graphics-processing-units-5/
http://www.mendeley.com/research/solving-euler-equations-graphics-processing-units-5/
http://dx.doi.org/10.1145/882262.882363
http://dx.doi.org/10.1016/j.jmgm.2008.03.001
http://link.aip.org/link/?PSI/5930/59301Y/1
http://link.aip.org/link/?PSI/5930/59301Y/1
http://dx.doi.org/10.1109/MCSE.2006.17
http://dx.doi.org/10.1364/AO.33.001735
http://dx.doi.org/10.1119/1.1289211
http://dx.doi.org/10.1119/1.1289211
http://dx.doi.org/10.1103/PhysRev.165.201
http://dx.doi.org/10.1080/08927020701744295

	s1
	l
	s2
	s3
	s3A
	E1
	E2
	E3
	E4
	s3B
	s4
	s4A
	s4A1
	s4B
	s4C
	F1
	s4D
	E5
	E6
	s5
	s5A
	F2
	s5A1
	s5AB
	s5B
	F5
	F4
	F3
	F6
	F7
	s6
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41

