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ABSTRACT

Laser beams can be used to create optical traps that can
hold and transport small particles. Optical trapping has been
used in a number of applications ranging from prototyping at the
microscale to biological cell manipulation. Successfully using
optical tweezers requires predicting optical forces on the parti-
cle being trapped and transported. Reasonably accurate theory
and computational models exist for predicting optical forces on
a single particle in the close vicinity of a Gaussian laser beam.
However, in practice the workspace includes multiple particles
that are manipulated using individual optical traps. It has been
experimentally shown that the presence of a particle can cast a
shadow on a nearby particle and hence affect the optical forces
acting on it. Computing optical forces in the presence of shadows
in real-time is not feasible on CPUs. In this paper, we introduce
a ray-tracing-based application optimized for GPUs to calculate
forces exerted by the laser beams on microparticle ensembles in
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an optical tweezers system. When evaluating the force exerted
by a laser beam on 32 interacting particles, our GPU-based ap-
plication is able to get a 66-fold speed up compared to a single
core CPU implementation of traditional Ashkin’s approach and
a 10-fold speedup over its single core CPU-based counterpart.

1 Introduction

An optical tweezers system is a scientific instrument that
uses light to manipulate micron-sized particles. Ashkin first in-
troduced the system in 1986 [1]. Since then scientists have been
using this system to manipulate and study microparticles such
as dielectric spheres, cells, DNA, bacteria, and virus. They are
often used in creating assembly of micro- and nano-scaled com-
ponents to make a functional device due to the extensive range
of positioning and orienting capabilities of the system [2]. Addi-
tionally, optical tweezers systems can be used to manipulate cells
in a controlled manner without causing them any damage [3,4,5].
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FIGURE 1. In an optical tweezer setup, a Gaussian laser beam is
converged by a convex lens (objective lens of a microscope) to a focal
point which is used for trapping microparticles. To create multiple opti-
cal traps, the laser beam is split into multiple-beams using a diffraction
grating. Diagram courtesy of [6].
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FIGURE 2. An illustration of the optical tweezers system. A laser
beam with a Gaussian-based intensity distribution is converged into a
focal point with the help of a convex lens. The figure shows laser beam
trapping microparticles at the focal point.

The optical tweezers system is composed of a very powerful
laser beam that has a Gaussian-based intensity distribution and
a convex lens that focuses the laser beam onto the focal point as
shown in Figure 1. This focused laser beam is used to move mi-
croparticles that are submerged in the fluid. When the micropar-

ticles are bigger than the wavelength of the light used in the laser
beam, the ray optics model is used to define the behavior of the
optical tweezers system [1]. The laser beam is decomposed into
a bundle of rays, each carrying a photon. When these rays inter-
act with the microparticles, they get reflected and refracted. As
each ray consists of a photon, the change in the momentum gives
rise to the optical force that is exerted on the microparticles. This
force is used by the optical tweezers system to trap and move
the microparticles. Figure 2 shows an illustration of a micropar-
ticle getting trapped. Figure 3 shows a series of images cap-
tured through the imaging device in the optical tweezers system
in our lab showing a microparticle (silicon bead) getting trapped.
An optical trap is placed close to the microparticle which exerts
a strong gradient force that pulls the particle towards the focal
point.

Simulation plays an important role in understanding opti-
cal tweezers system. To manipulate microparticles precisely, the
force exerted by the laser has to be known; this is studied by
performing simulations. The force calculation is a very compu-
tationally intensive task due to the Brownian motion of the mi-
croparticles suspended in the fluid which requires the time step of
the simulation to be smaller than 10~ sec. The popular approach
to overcome the timing constraint is to use a pre-computed force
look-up table to study simulation as done by Banerjee et al. [2].
Reasonably accurate theory and computational models exist for
predicting optical forces on a single particle in the close vicinity
of the Gaussian laser beam. However, in practice the workspace
includes multiple particles that are manipulated using individual
optical traps. Experiments have shown that the presence of a par-
ticle can cast a shadow on a neighboring particle and hence affect
the optical forces acting on it. When microparticles are closely
placed under several laser beams, the rays get reflected and re-
fracted which introduces secondary forces that affect the trap-
ping. This behavior is often referred as shadowing phenomenon.
It occasionally causes trapped microparticles to escape or cause
an unwanted microparticle to jump into the trap. Studying this
phenomenon is vital for scientists who are using optical tweezers
system for micro assembly or path planning [7, 8, 9].

In this paper, we present an optimized GPU-based ray trac-
ing application to calculate the force exerted by the laser beams
on the microparticles to study the shadowing phenomenon. Our
program is capable of computing the forces exerted by laser
beams on multiple microparticles (up to 32) at more than 100Hz
which is a higher rate than that of a typical optical device used
for imaging/monitoring the microparticles. We are able to cal-
culate the interaction between the lasers and several microparti-
cles and make it possible to study the shadowing phenomenon
vital for understanding optical trapping. When evaluating the
force exerted by a laser beam on 32 interacting particles, our
GPU-based application is able to get approximately a 66 times
speed up compared to a single core CPU implementation of tra-
ditional Ashkin’s approach and a 10 times faster than its single
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FIGURE 3. When an optical trap is placed close to a microparticle, it
pulls the particle towards the focal point. The images above captured us-
ing the imaging device in the optical tweezers system show a micropar-
ticle moving into a trap.

core CPU-based counterpart. In this paper, we also talk about
several choices we made while developing this application and
compare them in terms of performance and precision. We also

present an alternative way to calculate force exerted by the laser
that exploits coherence of the mapping from incident ray to the
x,y,z components of force and the transmitted ray by using non-
negative matrix factorization (NMF). This method can be useful
when computation of the path a ray travels within the microparti-
cle cannot be easily computed by simple sphere-object intersec-
tions (possibly caused by uneven density of the microparticle).
We also present an instance where the shadowing effect drasti-
cally changes the amount of force applied on a microparticle.

2 Related Work

Powerful lasers are used to manipulate microparticles in an
optical tweezers system. This was first introduced by Ashkin
et al. [10] where they used a single-beam gradient force to trap
micro- and nano-sized dielectric particles. Ashkin later intro-
duced a geometric ray-optic model that is used to compute trap-
ping forces created by a laser acting on microparticles much
larger than the wavelength of light [!]. Though the equation
Ashkin used is fairly optimized as it computes scattering and gra-
dient forces based only on the incident angle and the radial posi-
tion of the ray, it only works with rigid spherical objects and can-
not be used directly to study interaction between several beams
and microparticles. Our work is focused in calculating forces
using our GPU-based ray tracing algorithm which provides both
speed and flexibility needed to study shadowing phenomenon.

One of the biggest challenges in simulating optical tweez-
ers system is performing calculation of force exerted by the laser
quickly. Since the microparticles are influenced by the Brownian
motion, simulations have to be done at a time scale much smaller
than a microsecond. Banerjee et al. [2] introduced a framework
where offline simulation is used to pre-compute data at discrete
points and is later used to perform fast and accurate calculation
of dynamic trapping probability estimates at any arbitrary point
in 3D. This approach cannot accurately compute the effect when
laser interacts with several nanoparticles. We focus on calculat-
ing the force quickly on dynamic microparticles so that the in-
teractions of laser with several microparticles can be accurately
simulated to study the shadowing phenomenon.

Bianchi and Leonardo [ | 1] use GPUs to perform optical ma-
nipulation using holograms in real-time. They achieved speedups
of 45X and 350X over CPU on their super position algorithm
(SR) and Gerchberg-Saxton weighted algorithm (GSW) respec-
tively. The speedup helped them to perform interactive microma-
nipulation. Balijepalli et al. [12] and Patro et al. [13] have used
GPUs to compute trapping probabilities and have gotten signif-
icant speedups. We also carry out our calculation on the GPU.
However our work is focused on computing the force exerted by
the laser beams and we perform ray tracing to compute the force
as the laser interacts with several microparticles.

Sraj et al. [14] used dynamic ray tracing to induce optical
force on the surface of the deformable cell from which they cal-
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culate stress distribution. Rather than using the rigid spheres as
an approximated shape of the cell, they perform force calcula-
tion on the actual cell. They show that the shape of the cell
strongly influences how the optical force stretches and deforms
them. They also highlight that the applied optical forces change
drastically when the cells are deformed. We focus our study on
reducing the amount of time required to compute the exerted
force. We perform our calculation on rigid microparticles and
study how optical forces change when laser interacts with sev-
eral nanoparticles that are closely interacting with each other.

Zhou et al. [15] have introduced a force calculating model
that uses ray tracing based on spatial analytic geometry. Some of
our ray tracing is based on their work but we perform GPU-based
optimization and calculate interaction of laser beams with mul-
tiple particles quickly which is needed to study the shadowing
phenomenon. We also provide an alternative way of computing
the forces using NMF.

Using GPUs to accelerate computationally expensive algo-
rithms is gaining a strong interest in the scientific and gaming
community. Early work done by Harris ef al. [16] used GPUs to
perform visual simulation of fluids, clouds, and smoke. They
mapped some basic operators (like heat and Laplace) on the
GPU and used these operators to accelerate the simulation. They
performed their calculation on the GPU using programmable
shaders before general languages for GPU like CUDA, DirectX
Compute, and OpenCL became prominent. Considerable ad-
vancements in physically-based simulation have been made re-
cently due to their application in games and graphics [17]. In
particular, fluid simulations on GPUs have gained significant mo-
mentum [18,19,20,21]. Recently, Phillips ef al. [22] used a
cluster of GPUs to accelerate solver for 2D compressible Euler
equation and MBFLO solvers. Using a cluster of 16 GPUs they
achieve speedups of 496X and 88X on their Euler and MBFLO
solvers. The trend of using GPUs to accelerate existing algo-
rithms is growing. In our work, we use GPU-based accleration
of ray tracing to compute the force exerted by the optical tweez-
ers on the microparticles.

Carr et al. [23] made a very persuasive case for the use of
GPUs for computing ray-triangle intersections fairly efficiently
by using pixel shaders. Purcell ef al. [24] mapped the complete
ray tracing algorithm to the GPUs, using different pixel shaders
for creating rays, traversing rays, intersecting rays with triangles,
and illumination calculations. Another well-known ray tracing
engine Optix from NVIDIA uses GPUs for speed. Our ray trac-
ing program is similar in nature but rather than calculating color
for each pixel we compute the force exerted by the laser beam on
the microparticles and perform integration. Also, the density of
rays and the paths taken by the rays used in our calculation are
different from the ones used by typical ray tracing program that
uses a pinhole camera model.
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FIGURE 4. A diagram showing the simplified ray-optics model for
calculating the force. The incident ray is diverted from its original path
when it interacts with the microparticle. This causes the ray to change its
momentum. When the ray changes momentum due to the microparticle,
equal and opposite force is applied to the microparticle.

3 Approach

A simplified ray-optics model for calculating the force is
shown in Figure 4. Due to the change in the index of refrac-
tion between the fluid and the microparticle, the incident ray is
diverted from its original path as it goes through the micropar-
ticle. This causes the ray to change its momentum. When the
ray changes momentum, equal and opposite force is applied to
the microparticle. We calculate force contributed by each ray for
each particle. After the contribution of each ray is calculated, in-
tegration is done to find the total force. We divide up the entire
force calculation process into several steps described below.

3.1 Ray-Object Intersection

The first step is to compute fast ray-object intersection. We
compute ray-object intersection on the GPU using a 3D-grid-
based data structure. We choose uniform grid-based data struc-
ture over BSP, kDTree, and Octree because creating, updating,
and ray traversing operation is faster when a uniform 3D grid
is used as it allows constant time access to the cells and ray-
traversal can be carried out using the efficient 3D-DDA algorithm
[25,24]. In our application, the grid-based data structure is cre-
ated on the CPU and sent to the GPU memory every frame. In
the optical tweezers system, the number of particles monitored in
the experiments is often less than 64, so we create and update the
data structure on the CPU. Once the grid data is transferred to the
GPU, we perform ray-object intersection using a GPU Kernel.
The ray-object intersection is highly parallelizable and a huge
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performance gain is achieved by using many cores of a GPU as
compared to a single core of a CPU. At first we considered us-
ing Optix for ray tracing. However we soon realized that we
needed a ray tracer that was more flexible to meet our memory
mapping needs, easily integrable with the remaining steps in the
force calculating pipeline, and incurred less overhead. As Optix
is a general-purpose ray tracing software made for rendering, we
decided to develop our own dedicated GPU-based program that
is highly specialized for force calculation.

The laser beams are decomposed into Ry rays. Each ray
is mapped to a thread in the CUDA kernel and all Ry threads
are launched at the same time. We save the attributes (such as
position, radius) of the microparticles and the 3D grid data in the
global GPU memory whereas the properties of the 3D grid and
the laser beam are saved in the constant GPU memory as shown
in Figure 5. Every thread traces the path of a ray independently.

3.2 Force Calculation

When a ray intersects a microparticle, we compute the re-
flected, refracted, and the final transmitted ray by performing ba-
sic intersections. Using these rays and the properties of the mi-
croparticle, we first compute only the magnitude of the scattering
and the gradient force using the equation described by Ashkin
[1].

P T?[cos(26 —2r) + Rcos(2
FS:nlC{l—i—Rcos(ZG)— [c0s(26 = 2r) + Recos( 6)}}

1+ R2 +2Rcos(2r)

P
F,= an {Rsin(ZG) -

T?[sin(20 — 2r) + Rsin(20)]
1+ R?+2Rcos(2r)

where n; is the index of refraction of the incident medium, c is
the speed of light, P is the incident power of the ray, R is the
Fresnel reflection coefficient, T is the Fresnel transmission coef-
ficient, O is the angle of incidence, and r is the angle of refraction.
Then we compute the direction of the scattering and the gradient
forces directly from the vectors obtained from ray tracing. The
direction of the ray is the same as the scattering direction. For
the gradient direction, we use the scattering direction’s orthogo-
nal component that lies on the plane formed by the center of the
particle, the point where the ray intersects the particle, and the
intersection of the ray with the horizontal plane as described in
[1,15]. Now using the computed magnitude and the direction,
we find the scattering and gradient forces. These forces are com-
bined to calculate the total force exerted by the ray. The total
force is then saved in the GPU memory. The transmitted ray is
further traced to find the intersection of the ray with other parti-
cles and the steps described above are repeated as needed.

Input in Constant GPU Memory Input in Global GPU Memory
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FIGURE 5. An overview of the GPU pipeline. The properties of
the laser and the 3D grid are saved into the constant GPU memory
whereas the properties of the particles and the 3D grid cells are saved in
the global GPU memory. These data are used by the first GPU kernel
that performs ray-object intersection and force per ray calculation. The
output is written to a large global memory array. We then perform a
parallel-prefix sum at the output. As the parallel-prefix sum adds up all
the components together, Segmentation/Final force calculating kernel
finds the proper segment boundaries for each component and subtracts
necessary amount from the boundaries to compute the final result.
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FIGURE 6. Pictorial view of the matrices that map discretized repre-
sentation of incident ray angles to the force applied to the microparticle,
the direction of the transmitted ray, and the position of the transmitted
ray. The mapping is highly coherent which allows NMF to efficiently
factorize each component of the matrix into two compact sized outer
product matrices. Value of m used in our experiments is 4.

3.3 Force Calculation using Non-Negative Matrix Fac-
torization

As an alternative to calculating the force independently for
each ray, we also use non-negative matrix factorization (NFM) to
take advantage of the coherence between the input rays, the force
exerted, and the transmitted rays. The idea is to rotate the ray-
object intersection point so that it lines up with the pole of the
microparticle. Then we represent the ray by its spherical coor-
dinates. We discretize the angles and compute the force exerted
and the outgoing transmitted ray for each discrete set of angles.
By doing this, we have a look-up map that is used to convert
the incident ray angle to the exerted force, outgoing rays posi-
tion, and direction directly. This look-up map can be very large
and is made for each component of force and the outgoing ray.
When we created the mapping, we observed that the mapping
of the exerted force and the transmitted rays are all very coher-
ent and have mostly low-frequency data as shown in Figure 6(a).
To take advantage of this coherence, we use non-negative matrix
factorization to factorize each mapping matrix into two compact
matrices. Lawrence et al. [26] have applied NMF to decompose

the re-parameterized BRDF matrix that uses the half angle for-
mulation. Here, we use NMF to compact the mapping matrix as
shown in Figure 6(b) and save the dominant representation.

Once the matrices are saved, computing the force exerted by
aray is straightforward. When a ray intersects a sphere, we first
compute the intersection position and the incident direction. We
rotate the ray so the intersection position aligns with the pole of
the microparticles. We then convert the incident ray into spheri-
cal coordinates. Using these angles, we multiply the appropriate
rows and columns of the matrices generated by the NMF to get
the mapping for each component of the force and the transmit-
ted ray. Once we have the components, we apply inverse of the
rotation that we applied to the incident ray to then calculate final
values.

By using this alternative method to compute the force, we
can take advantage of the coherence of the mapping. How-
ever, this method suffers from performance and precision issues
compared to the ray tracing approach. The performance loss is
caused by the matrix multiplication done to rotate the vectors
and the cost of multiplying a row and a column to get values
for each component of the force and the transmitted ray. The
performance results are shown in Table 1. The precision loss
is created by discretization of the input angles and the compact
factorization created by NMF. Due to these reasons, we mainly
use regular Ashkin’s equation to calculate force using ray tracing
when micro-sphere is used. However we believe that the NMF
method can be useful when the microparticle has an uneven den-
sity which makes computation of the path a ray travels within the
particle both difficult and computationally expensive. Such cases
arise when computing the force applied to cells or micro-spheres
with uneven density.

3.4 Force Integration

Once the CUDA kernel to compute the force for each ray
is completed, we compute the net force applied on each particle
by performing integration of the force field over the surface of
the microparticle as done by Banerjee et al. [2]. We also per-
form this calculation on the GPU to save data transfer latency.
At this stage of the pipeline, we have the force exerted by each
ray in the GPU memory. Each component of the force for each
particle is grouped and saved in a different part of a single large
memory array. For example, all the scattering force exerted on a
particle is saved in the first block followed by the gradient force
and then followed by the entries of the second particle as shown
in Figure 5. We perform a parallel-prefix sum on this large ar-
ray once. This will scan all the components for the force for all
particles together. Since the number of particles and the individ-
ual values of the force components used in the simulation are not
very high, we do not suffer overflow error while performing the
parallel-prefix sum of all the components together. We then ex-
ecute another CUDA kernel that segments and outputs the final
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Number of Rays

Method 82 162 32? 642 1282 2567

Ashkin (Float) 0.0759 0.3558 1.2708 5.0548 20.2793 81.7446
Ashkin (Double) ~ 0.0762 0.3705 13399 53316 21.5276 86.5138
CPU Ray (Float) ~ 0.0807 03389 1.4369 5.4946 22.1243 88.9347
CPU Ray (Double) 0.0852 0.3529 1.4268 5.7644 22.8563 92.5199
GPU NMF (Float)  0.9592 0.9589 0.9826 1.1923 2.0615  5.4888
GPU Ray (Float) ~ 0.7132 0.8745 0.8337 0.9007 1.2058  2.3813

TABLE 1.
different locations.

force contribution for each particle by subtracting appropriate en-
tries from the segment boundaries of each component as shown
in Figure 7. This final step performs extremely well on the GPU
because the output of the previous step is very big so transferring
the data and calculating the final result on the CPU will cause a
delay. By calculating the final force contribution on the GPU, we
only need to read back the several components per particle.

Qutput of prefix sum in one large Global GPU

Rays that affect the particle X

Part of a large memory array Total scattering force

that contains scattering force applied to particle X is

applied to particle X after prefix F.=B—-A
sum.
FIGURE 7. The final force contribution for each particle is calculated

by subtracting values from the segment boundaries of an array that con-
tains the result of the parallel-prefix sum. In this figure, we show how
the final value of the scattering force is computed for a particle.

4 Results and Discussion

We have implemented our system in C++. We use the
CUDA API for the GPU-based ray tracing. For all of our ex-
periments, we use Windows 7 64-bit machine with Intel I5-750
2.66 GHz processor, NVIDIA GeForce 470 GTX GPU, and 8
GB of RAM.

The time in seconds taken by the various methods to compute total force exerted on a single microparticle performed 5000 times at

4.1 Performance Comparison

We first show the performance gains achieved by using our
GPU-based method. In our first set of experiments, we use rigid
microparticles and record the amount of time it takes to compute
the force. Our performance results are shown in Table 1 and Ta-
ble 3. We compare the timings of various methods: Ashkin’s
traditional, CPU-based ray tracing, GPU-based method that uses
NMEF, and GPU-based ray tracing methods using single and dou-
ble precision floating-point arithmetic. For the first experiment,
we perform force calculations on a single microparticle 5000
times placed in different locations around the focal point of the
laser beam. We also vary the number of rays that are used to
describe the laser beam. As shown in Table 1, when only one
microparticle and 256 rays are used to represent the laser beam,
the GPU-based force calculation is about 34 times faster than
Ashkin’s method.

Some of the methods we use perform computation on the
CPU and some use the GPU. We compare precision between
various methods against CPU-based Ashkin’s method computed
using equal number of rays and double precision floating-point
arithmetic. We perform several comparisons by varying the num-
ber of rays to represent the laser beam. The results are shown in
Table 2. In general, the relative error decreases as the number of
rays increases. For NMF based computation, the relative error
decreases at first and then fluctuates slightly as we increase the
number of rays. This is because we discretized input angles while
creating the mapping table. Due to this, increasing the number
of rays while keeping the size of the mapping table constant, can
increase the amount of error. For regular computations, 322 is
an ideal number of rays to use to represent the laser as both the
relative error and the computation cost are low.

For the second experiment, we performed force calculations
using a laser beam and 32 interacting microparticles computed
5000 times placed in different locations. The ray tracing methods
can capture the interaction of a laser with multiple particles while
Ashkin’s traditional method can only capture interaction of the
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laser with a particle at a time ignoring the shadowing effects. For
the second experiment, we also show the performance difference
triggered by the use of a data structure while doing ray tracing.
As shown in Table 3, GPU-based force calculation that uses grid
based data structure is about a 66 times faster than traditional
Ashkin’s method and about 10 times faster than its CPU-based
ray tracing analog when 2567 rays are used to represent the laser
beam.

When inspected carefully, using a 3D grid causes a slight
delay when the numbers of rays or particles are low. As shown
in Figure 8, when the numbers of rays or particles increases, the
3D grid performs better than the brute-force ray tracing method.
This is generally because of the overhead of creating, updating,
and transferring the grid to the GPU. As the performance de-
pends on the number of particles, we allow the user to select any
desired method.

4.2 Shadowing Phenomenon

We perform simple experiments to show the shadowing phe-
nomenon. In the traditional ray-tracing community, the phe-
nomenon we are simulating would be called as the second and
higher-order refractions. However, since this is referred to as the
shadowing phenomenon by the optical tweezers community, this
is the term we shall use here.

We use two microparticles for these experiments. The first
microparticle is moving in a path. The second microparticle is
stationary and is being gripped by two laser beams with one focal
point exactly above and the other below the microparticle. The
rays that are incident on the second microparticle get refracted
which can influence the number of rays that interact with the
first microparticle. Thus the presence of the second microparticle
causes a change in the amount of force being applied to the first
microparticle. We show this change by performing simulations.

In the first experiment, we first perform the simulation using
a single silicon bead of size 5 microns. Three Gaussian laser

Number of Rays
Method 8? 16 642 1287 2567 5122
GPU NMF (Float)  0.0068 0.0047 0.0034 0.0028 0.0035 0.0025 0.0032
CPU Ray (Double) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CPU Ray (Float) 0.0005 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001
GPU Ray (Float) 0.0005 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005

TABLE 2. Here we show the comparison of precision between various methods rounded up to the nearest 4 digits. We take Ashkin’s method as the
reference and compute the relative error to compare other methods with an equal number of rays. As the number of rays increase, the relative error

decreases in general but the computational cost increases.

Number of Rays

Method 82 162 322 642 1282 256°
Ashkin (Float) 1.8877 7.7762 31.5119 128.1370 515.1390 2081.6000
Ashkin (Double) 1.7971  7.7572  32.0977 129.2160 519.8880 2101.7000
CPU Ray (Float) 0.2951 1.2400 5.1456  21.4900  86.4165  346.2620
CPU Ray (Double) 0.3103 1.3025 59534  23.8178  95.1179  379.2980
CPU Ray with 3D Grid (Double) 0.3831 1.3404 5.7862  22.8523  90.7224  360.8080
GPU NMF (Float) 1.3050 2.0442  3.5816 9.1022 30.7739  116.5450
GPU Ray (Float) 1.2649 1.6148 1.9824 3.7576 9.9187 33.3911
GPU Ray with 3D Grid (Float) 1.8859 1.8621  2.2662 3.6953 9.4589 31.5070

TABLE 3. The time taken (in seconds) by the various methods to compute total force exerted by a laser beam on 32 interacting microparticles
computed 5000 times at different locations. It is interesting to note that when the number of rays is low, brute-force ray tracing is faster than the ray

tracing method that uses a 3D grid data structure. This is due to the cost of creating and maintaining the data structure.
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FIGURE 8. Here we show the time taken to compute the force ex-
erted by a laser beam containing 32 rays 5000 times on a varying number
of particles. We compare brute-force GPU ray tracing against GPU ray
tracing with a 3D grid. As the number of particles increases, the use of
a 3D grid data structure shows a clear advantage.

beams each focused at locations (0.0,0.0,0.0), (—1.0,7.5,0.0),
and (—1.0,2.5,0.0) are used. A bead is placed at (0.0,—4.0,0.0)
and it slowly moves to (0.0,0.0,0.0). In Figure 9, we show the
force experienced by the bead as it goes from (0.0,—4.0,0.0) to
(0.0,0.0,0.0).

Now to show the shadowing phenomenon, we add an ex-
tra bead at location (—1.0,5.5,0.0) in the same setup described
above. This bead acts like a lens and changes the direction of
the rays from the lasers. This causes the first bead to experience
force from secondary rays. We compute the force experienced by
the bead as it goes from (0.0,—4.0,0.0) to (0.0,0.0,0.0) when
the shadowing phenomenon is occurring. In Figure 9, we show
the difference in the amount of force experienced by the first mi-
croparticle. This change adds instability and weakens the traps.
Now again, we do the similar experiment but this time move
the bead from (—4.0,0.0,0.0) to (0.0,0.0,0.0). Figure 10 shows
the result of force calculation with and without the shadow phe-
nomenon.

In both experiments, shadowing effects changes force ap-
plied significantly. This can change the behavior of the opti-
cal traps. Experimentally validating the results of simulations
is challenging. There is no direct way to measure force. The
force needs to be inferred from the observed motion. This re-
quires a high speed image capture, accounting for the Brownian
motion, and accounting for image blurring due to motion in the
z-direction. We are currently in the process of designing experi-
ments to record particle trajectories in the presence and absence

(-1.0,7.5,0.0)

4 (-1.0,2.5,0.0)

(0.0,0.0,0.0)

(a) Focal point of three laser beams

y

i/

(c) Multiple microparticle with one bead mov-
ing in Y axis

Force

Force X
Force Y
Force Z
Force X with Shadowing
Force Y with Shadowing
Force Z with Shadowing

25 . . L L . . L )
-4 -3.8 -3 25 -2 -1.8 -1 0.5 0
Y pos

(d) Force comparision

FIGURE9. An illustration of the shadowing phenomenon. Figure (a)
shows the focal point of three laser beams at location (0.0,0.0,0.0),
(—1.0,7.5,0.0), and (—1.0,2.5,0.0). Figure (b) shows the movement
of a single particle from (0.0,—4.0,0.0) to (0.0,0.0,0.0). The Fig-
ure (c) shows the movement of same particle when second particle is
present at location (—1.0,5.5,0.0). Finally, Figure (d) shows the dif-
ference in force experienced by the first bead caused by the shadowing
phenomenon.
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of shadowing phenomena.

(a) Single microparticle moving in X axis

\

L/ \ i/

N\ /]

(b) Multiple microparticle with one bead moving in X axis

Force X
Force Y
Force Z
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Force Y with Shadowing
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(c) Force comparision
FIGURE 10. An illustration of the shadowing phenomenon similar

to the previous figure. Figure (a) shows the movement of a single par-
ticle from (—4.0,0.0,0.0) to (0.0,0.0,0.0). The Figure (b) shows the
movement of same particle when second particle is present at location
(—1.0,5.5,0.0). Finally, Figure (c) shows the difference in force expe-
rienced by the first bead caused by the shadowing phenomenon.
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5 Conclusion and Future Work

The GPU-based application we presented in this paper com-
putes the forces when laser beams interact with multiple mi-
croparticles and allow a scientist to study the shadowing phe-
nomenon. Studying these phenomenon in real-time is vital as
it allows efficient planning required for trapping and manipulat-
ing microparticles. When evaluating the force exerted by a laser
beam on 32 interacting particles, our GPU-based application is
able to get approximately a 66-fold speed up compared to the sin-
gle core CPU implementation of traditional Ashkin’s approach
and 10-fold speedup over its single core CPU-based counterpart.
We also present an alternative way to calculate the force exerted
by the laser that exploits coherence of the mapping from incident
ray to the components of force and the transmitted ray by using
NMF.

In future we plan to perform experimental investigation to
validate our computational model by performing tests on scenar-
ios that can be validated experimentally. Currently every time
step is computed independently. Computing the force over a few
time steps by taking account of changes might provide further
speedup.
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