
Sujal Bista
Institute for Advanced Computer Studies,

Department of Computer Science,

University of Maryland,

College Park, MD 20742

e-mail: sujal@cs.umd.edu

Sagar Chowdhury
Research Assistant

Department of Mechanical Engineering,

University of Maryland,

College Park, MD 20742

e-mail: sagar353@umd.edu

Satyandra K. Gupta
Professor

Fellow of ASME

Institute for Systems Research,

Department of Mechanical Engineering,

University of Maryland,

College Park, MD 20742

e-mail: skgupta@umd.edu

Amitabh Varshney
Professor

Institute for Advanced Computer Studies,

Department of Computer Science,

University of Maryland,

College Park, MD 20742

e-mail: varshney@cs.umd.edu

Using GPUs for Realtime
Prediction of Optical Forces
on Microsphere Ensembles
Laser beams can be used to create optical traps that can hold and transport small
particles. Optical trapping has been used in a number of applications ranging from pro-
totyping at the microscale to biological cell manipulation. Successfully using optical
tweezers requires predicting optical forces on the particle being trapped and transported.
Reasonably accurate theory and computational models exist for predicting optical forces
on a single particle in the close vicinity of a Gaussian laser beam. However, in practice
the workspace includes multiple particles that are manipulated using individual optical
traps. It has been experimentally shown that the presence of a particle can cast a shadow
on a nearby particle and hence affect the optical forces acting on it. Computing optical
forces in the presence of shadows in real-time is not feasible on CPUs. In this paper, we
introduce a ray-tracing-based application optimized for GPUs to calculate forces exerted
by the laser beams on microparticle ensembles in an optical tweezers system. When eval-
uating the force exerted by a laser beam on 32 interacting particles, our GPU-based
approach is able to get a 66-fold speed up compared to a single core CPU implementa-
tion of traditional Ashkin’s approach and a 10-fold speedup over the single core CPU-
based implementation of our approach. [DOI: 10.1115/1.4023862]

1 Introduction

An optical tweezers system is a scientific instrument that uses
light to manipulate micron-sized particles. Ashkin first introduced
the system in 1986 [1]. Since then scientists have been using this
system to manipulate and study microparticles such as dielectric
spheres, cells, DNA, bacteria, and virus. They are often used in
creating assembly of micro- and nano-scaled components to make
a functional device due to the extensive range of positioning and
orienting capabilities of the system [2]. Additionally, optical
tweezers systems can be used to manipulate cells in a controlled
manner without causing them any damage [3–7].

The optical tweezers system is composed of a very powerful
laser beam that has a Gaussian-based intensity distribution and a
convex lens that focuses the laser beam onto the focal point as
shown in Fig. 1. This focused laser beam is used to move micro-
particles that are submerged in the fluid. When the microparticles
are larger than the wavelength of the light used in the laser beam,
the ray optics model is used to define the behavior of the optical
tweezers system [1]. The laser beam is decomposed into a bundle
of rays, each carrying a photon. When these rays interact with the
microparticles, they get reflected and refracted. As each ray con-
sists of a photon, the change in the momentum gives rise to the
optical force that is exerted on the microparticles. This force is
used by the optical tweezers system to trap and move the micro-
particles. Figure 2 shows an illustration of a microparticle getting
trapped. Figure 3 shows a series of images captured through the

imaging device in the optical tweezers system in our lab showing
a microparticle (silica bead) getting trapped. An optical trap is
placed close to the microparticle which exerts a strong gradient
force that pulls the particle towards the focal point.

Simulation plays an important role in understanding the optical
tweezers system. To manipulate microparticles precisely, the
force exerted by the laser has to be known; this is studied by per-
forming simulations. The force calculation is a computationally
intensive task because it includes simulation of the Brownian
motion of the fluid-suspended microparticles requiring simulation
fidelity finer than 10�6 s. The popular approach to overcome this
timing constraint is to use a precomputed force look-up table to
study simulation as done by Banerjee et al. [2]. Reasonably accu-
rate theory and computational models exist for predicting optical
forces on a single particle in the close vicinity of the Gaussian
laser beam. However, in practice the workspace includes multiple
particles that are manipulated using individual optical traps.
Experiments have shown that the presence of a particle can cast a
shadow on a neighboring particle and hence affect the optical
forces acting on it. When microparticles are closely placed under
several laser beams, the rays get reflected and refracted which
introduces secondary forces that affect the trapping. This behavior
is often referred to as shadowing phenomenon. It occasionally
causes trapped microparticles to escape or an unwanted micropar-
ticle to jump into the trap. Studying this phenomenon is vital for
scientists who are using the optical tweezers system for micro as-
sembly or path planning [9–14].

In this paper, we present an optimized GPU-based ray tracing
application to calculate the force exerted by the laser beams on
the microparticles to study the shadowing phenomenon. Our pro-
gram is capable of computing the forces exerted by laser beams

Contributed by the Computers and Information Division of ASME for publication
in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received February 2, 2013; final manuscript received February 19, 2013; published
online April 25, 2013. Editor: Bahram Ravani.

Journal of Computing and Information Science in Engineering SEPTEMBER 2013, Vol. 13 / 031002-1
Copyright VC 2013 by ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 09/23/2013 Terms of Use: http://asme.org/terms



on multiple microparticles (up to 32) at more than 100 Hz, which
is faster than the rate at which a typical optical device would
image/monitor the microparticles. We are able to calculate the
interaction between the lasers and several microparticles to study
the shadowing phenomenon vital for understanding optical trap-
ping. When evaluating the force exerted by a laser beam on 32
interacting particles, our GPU-based approach is able to get
approximately a 66 times speed up compared to a single core
CPU implementation of traditional Ashkin’s approach and 10
times speedup over our approach’s CPU implementation. In this

paper, we also talk about several choices we made while develop-
ing this application and compare them in terms of performance
and precision. We also present an alternative way to calculate
force exerted by the laser that exploits coherence of the mapping
from incident ray to the x,y,z components of the force and the
transmitted ray by using non-negative matrix factorization
(NMF). This method is useful when the ray’s path within the
microparticle cannot be easily computed by simple sphere-object
intersections (possibly caused by uneven density of the micro-
particle). We also present an instance where the shadowing effect
drastically changes the amount of force applied on a
microparticle.

2 Related Work

Powerful lasers are used to manipulate microparticles in an
optical tweezers system. This was first introduced by Ashkin et al.
[15], where a single-beam gradient force was used to trap micro-
and nano-sized dielectric particles. Ashkin later introduced a geo-
metric ray-optics model that is used to compute trapping forces
created by a laser acting on microparticles much larger than the
wavelength of light [1]. Though the equation Ashkin used is fairly
optimized as it computes scattering and gradient forces based only
on the incident angle and the radial position of the ray, it only
works with rigid spherical objects and cannot be used directly to
study interaction between several beams and microparticles. Our
work is focused on calculating forces using our GPU-based ray
tracing algorithm which provides both speed and flexibility
needed to study shadowing phenomenon.

Fig. 1 In an optical tweezer setup, a Gaussian laser beam is converged by a convex lens
(objective lens of a microscope) to a focal point which is used for trapping microparticles.
To create multiple optical traps, the laser beam is split into multiple-beams using a
diffraction grating. Diagram courtesy of [8].

Fig. 2 An illustration of the optical tweezers system. A laser
beam with a Gaussian-based intensity distribution is converged
into a focal point with the help of a convex lens. The figure
shows laser beam trapping microparticles at the focal point.

031002-2 / Vol. 13, SEPTEMBER 2013 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 09/23/2013 Terms of Use: http://asme.org/terms



One of the biggest challenges in simulating the optical tweezers
system is efficiently performing calculation of the laser force cal-
culation. Since the microparticles are influenced by the Brownian
motion, simulations have to be done at a time scale much smaller
than a microsecond. Banerjee et al. [2] introduced a framework
where offline simulation is used to precompute data at discrete
points and is later used to perform fast and accurate calculation of
dynamic trapping probability estimates at any arbitrary point in

3D. This approach cannot accurately compute the effect when
laser interacts with several nanoparticles. We focus on calculating
the force quickly on dynamic microparticles so that the interac-
tions of laser with several microparticles can be accurately simu-
lated to study the shadowing phenomenon.

Bianchi and Leonardo [16] use GPUs to perform optical manip-
ulation using holograms in real-time. They achieved speedups of
45� and 350� over CPU on their super position algorithm (SR)
and Gerchberg-Saxton weighted algorithm (GSW), respectively.
The speedup helped them to perform interactive micromanipula-
tion. Balijepalli et al. [17] and Patro et al. [18] have used GPUs
to compute trapping probabilities and have gotten significant
speedups. Our approach in this paper can work on CPUs and
GPUs. We perform ray tracing to compute the force exerted by
the laser as it interacts with several microparticles.

Sraj et al. [19] used dynamic ray tracing to deduce the optical
force on the surface of the deformable cell from which they calcu-
late stress distribution. Rather than using the rigid spheres as an
approximated shape of the cell, they perform force calculation on
the actual cell. They show that the shape of the cell strongly influ-
ences how the optical force stretches and deforms them. They also
highlight that the applied optical forces change drastically when
the cells are deformed. We focus our efforts on reducing the
amount of time required to compute the exerted force. We per-
form our calculation on rigid microparticles and study how optical
forces change when laser interacts with several nanoparticles that
are closely interacting with each other.

Zhou et al. [20] have introduced a force calculating model
that uses ray tracing based on spatial analytic geometry. In our
ray-tracing-based approach we perform GPU-based optimizations
and calculate interaction of laser beams with multiple particles
efficiently which is critical to studying the shadowing phenom-
enon. We also provide an alternative way of computing the forces
using NMF.

Using GPUs to accelerate computationally expensive algo-
rithms is gaining a strong interest in the scientific and gaming
community. Early work done by Harris et al. [21] used GPUs to
perform visual simulation of fluids, clouds, and smoke. They
mapped some basic operators (like heat and Laplace) on the GPU
and used these operators to accelerate the simulation. They per-
formed their calculation on the GPU using programmable shaders
before general languages for GPU like CUDA, DirectX Compute,
and OpenCL became prominent. Considerable advancements in
physically-based simulation have been made recently due to their
application in games and graphics [22]. In particular, fluid simula-
tions on GPUs have gained significant momentum [23–26].
Recently, Phillips et al. [27] used a cluster of GPUs to accelerate
solver for 2D compressible Euler equation and MBFLO solvers.
Using a cluster of 16 GPUs they achieve speedups of 496� and
88� on their Euler and MBFLO solvers. The trend of using GPUs
to accelerate existing algorithms is growing. In our work, we use
GPU-based accleration of ray tracing to compute the force exerted
by the optical tweezers on the microparticles.

Carr et al. [28] make a persuasive case for the use of GPUs for
computing ray-triangle intersections efficiently by using pixel
shaders. Purcell et al. [29] mapped the complete ray tracing algo-
rithm to the GPUs, using different pixel shaders for creating rays,
traversing rays, intersecting rays with triangles, and illumination
calculations. Our ray tracing program to NVIDIA’s Optix but
rather than calculating color per pixel we compute the force
exerted by the laser beam on the microparticles and perform inte-
gration. Also, the density of rays and the paths taken by the rays
used in our calculation are different from the ones used by a typi-
cal ray tracing program that uses a pinhole camera model.

3 Approach

A simplified ray-optics model for calculating the force is shown
in Fig. 4. Due to the change in the index of refraction between the
fluid and the microparticle, the incident ray is diverted from its

Fig. 3 When an optical trap is placed close to a microparticle,
it pulls the particle towards the focal point. The images above
captured using the imaging device in the optical tweezers sys-
tem show a microparticle moving into a trap.

Journal of Computing and Information Science in Engineering SEPTEMBER 2013, Vol. 13 / 031002-3

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 09/23/2013 Terms of Use: http://asme.org/terms



original path as it goes through the microparticle. This causes the
ray to change its momentum. When the ray changes momentum,
equal and opposite force is applied to the microparticle. We calcu-
late force contributed by each ray for each particle. After the
contribution of each ray is calculated, integration is done to find
the total force. We divide the entire force calculation process into
several steps described below.

3.1 Ray-Object Intersection. We compute ray-object inter-
section on the GPU using a 3D-grid-based data structure. We
choose a uniform grid-based data structure over BSP, kDTree, and
Octree because creating, updating, and ray traversing operations
are faster due to the constant time access to the cells and the use
of the efficient 3D-DDA algorithm for ray-traversal [29,30]. In
our application, the grid-based data structure is created on the
CPU and sent to the GPU memory every frame. In the optical
tweezers system, the number of particles monitored in the experi-
ments is often less than 64, so we create and update the data
structure on the CPU. Once the grid data is transferred to the
GPU, we perform ray-object intersection using a GPU kernel. The
ray-object intersection is highly parallelizable and a significant
performance gain is achieved by using the massively parallel
cores of a GPU as compared to a single core of a CPU. At first we
considered using Optix for ray tracing. However we soon realized
that we needed a ray tracer that was more flexible to meet our
memory mapping needs, easily integrable with the further steps in
the force calculation pipeline, and incurred less overhead. As
Optix is a general-purpose ray tracing software made for render-
ing, we decided to develop our own dedicated GPU-based pro-
gram that is highly specialized for force calculation.

The laser beams are decomposed into RN rays. Each ray is
mapped to a thread in the CUDA kernel and all RN threads are
launched at the same time. We save the attributes (such as posi-
tion, radius) of the microparticles and the 3D grid data in the
global GPU memory whereas the properties of the 3D grid and the
laser beam are saved in the constant GPU memory as shown in
Fig. 5. Every thread traces the path of a ray independently.

3.2 Force Calculation. When a ray intersects a micropar-
ticle, we compute the reflected, refracted, and the final transmitted
ray by performing basic intersections. Using these rays and
the properties of the microparticle, we first compute only the

magnitude of the scattering and the gradient force using the equa-
tion described by Ashkin [1],

Fs ¼
n1P

c
1þ R cosð2hÞ � T2½cosð2h� 2rÞ þ R cosð2hÞ�

1þ R2 þ 2R cosð2rÞ

� �

Fg ¼
n1P

c
R sinð2hÞ � T2½sinð2h� 2rÞ þ R sinð2hÞ�

1þ R2 þ 2R cosð2rÞ

� �

where n1 is the index of refraction of the incident medium, c is the
speed of light, P is the incident power of the ray, R is the Fresnel
reflection coefficient, T is the Fresnel transmission coefficient, h is
the angle of incidence, and r is the angle of refraction. Then we

Fig. 5 An overview of the GPU pipeline. The properties of the
laser and the 3D grid are saved into the constant GPU memory,
whereas the properties of the particles and the 3D grid cells are
saved in the global GPU memory. These are used by the first
GPU kernel that performs ray-object intersection and force per
ray calculation. The output is written to a large global memory
array. We then perform a parallel-prefix sum at the output. As
the parallel-prefix sum adds up all the components together,
segmentation/final force calculation kernel finds the proper
segment boundaries for each component and subtracts neces-
sary amount from the boundaries to compute the final result.

Fig. 4 Diagram showing the simplified ray-optics model for
calculating the force. The incident ray is diverted from its origi-
nal path when it interacts with the microparticle. This causes
the ray to change its momentum. When the ray changes mo-
mentum due to the microparticle, equal and opposite force is
applied to the microparticle.

031002-4 / Vol. 13, SEPTEMBER 2013 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 09/23/2013 Terms of Use: http://asme.org/terms



compute the direction of the scattering and the gradient forces
directly from the vectors obtained from ray tracing. The direction
of the ray is the same as the scattering direction. For the gradient
direction, we use the scattering direction’s orthogonal component
that lies on the plane formed by the center of the particle, the point
where the ray intersects the particle, and the intersection of the
ray with the horizontal plane as described in [1,20]. Now using
the computed magnitude and the direction, we find the scattering
and gradient forces. These forces are combined to calculate the
total force exerted by the ray. The total force is then saved in the
GPU memory. The transmitted ray is further traced to find
the intersection of the ray with other particles and the steps
described above are repeated as needed.

3.3 Force Calculation Using Non-Negative Matrix
Factorization. As an alternative to calculating the force inde-
pendently for each ray, we also use non-negative matrix factoriza-
tion (NMF) to take advantage of the coherence between the input
rays, the force exerted, and the transmitted rays. The idea is to
rotate the ray-object intersection point so that it lines up with the
axis-aligned pole of the microparticle. Then we represent the ray
by its spherical coordinates. We discretize the angles, compute the
force exerted, and the outgoing transmitted ray for each discrete
set of angles. This provides us a look-up map that is used to
convert the incident ray angle to the exerted force, outgoing ray
position, and direction directly. This look-up map can be very
large and is generated for each component of the force and the
outgoing ray. We have observed that there is a high coherence
between the mapping of the exerted force and the transmitted rays
as shown in Fig. 6(a). To take advantage of this coherence, we
use NMF to factorize each mapping matrix into two compact mat-
rices. Lawrence et al. [31] have applied NMF to decompose the
reparameterized BRDF matrix that uses the half angle formula-
tion. Here, we use NMF to compact the mapping matrix as shown
in Fig. 6(b).

Once the matrices are saved, computing the force exerted by
a ray is straightforward. When a ray intersects a sphere, we first

compute the intersection position and the incident direction. We
rotate the ray so the intersection position aligns with the pole of
the microparticles. We then convert the incident ray into spheri-
cal coordinates. Using these angles, we multiply the appropriate
rows and columns of the matrices generated by the NMF to get
the mapping for each component of the force and the transmit-
ted ray. Once we have the components, we apply inverse of the
rotation that we applied to the incident ray to then calculate
final values.

By using this alternative method to compute the force, we
can take advantage of the coherence of the mapping. However,
this method suffers from performance and precision issues com-
pared to the ray tracing approach. The performance loss is
caused by the matrix multiplication to rotate the vectors and the
cost of multiplying a row and a column to get values for each
component of the force and the transmitted ray. The perform-
ance results are shown in Table 1. The precision loss is created
by discretization of the input angles and the compact factoriza-
tion created by NMF. Due to these reasons, we use regular Ash-
kin’s equation to calculate force using ray tracing when the
micro-sphere is used. However we believe that the NMF
method can be useful when the microparticle has an uneven
density which makes computation of the path a ray travels
within the particle both difficult and computationally expensive.
Such cases arise when computing the force applied to cells or
nonhomogeneous micro-spheres with nonuniform density
distribution.

3.4 Force Integration. Once the CUDA kernel to compute
the force for each ray is completed, we compute the net force
applied on each particle by performing integration of the force
field over the surface of the microparticle as done by Banerjee
et al. [2]. We also perform this calculation on the GPU to save
data transfer latency. At this stage of the pipeline, we have the
force exerted by each ray in the GPU memory. Each component
of the force for each particle is grouped and saved in a different
part of a single large memory array. For example, all the scatter-
ing force exerted on a particle is saved in the first block followed
by the gradient force and then followed by the entries of the sec-
ond particle as shown in Fig. 5. We perform a parallel-prefix sum
on this large array. This will scan all the components of the force
for all particles together. Since the number of particles and the
individual values of the force components used in the simulation
are small, we do not suffer overflow error while performing the
parallel-prefix sum. We then execute another CUDA kernel that
segments and outputs the final force contribution for each particle
by subtracting appropriate entries from the segment boundaries of
each component as shown in Fig. 7. This final step performs
extremely well on the GPU because the output of the previous
step is large and so transferring it to the CPU will incur a large
latency. By calculating the final force contribution directly on the
GPU, we only need to read back the several components per
particle.

Table 1 The time in seconds taken by the various methods to
compute total force exerted on a single microparticle performed
5000 times at different locations

Number of rays

Method 82 162 322 642 1282 2562

Ashkin (Float) 0.0759 0.3558 1.2708 5.0548 20.2793 81.7446
Ashkin (Double) 0.0762 0.3705 1.3399 5.3316 21.5276 86.5138
CPU Ray (Float) 0.0807 0.3389 1.4369 5.4946 22.1243 88.9347
CPU Ray (Double) 0.0852 0.3529 1.4268 5.7644 22.8563 92.5199
GPU NMF (Float) 0.9592 0.9589 0.9826 1.1923 2.0615 5.4888
GPU Ray (Float) 0.7132 0.8745 0.8337 0.9007 1.2058 2.3813

Fig. 6 Pictorial view of the matrices that map discretized repre-
sentation of incident ray angles to the force applied to the
microparticle, the direction of the transmitted ray, and the posi-
tion of the transmitted ray. The mapping is highly coherent
which allows NMF to efficiently factorize each component of
the matrix into two compact sized outer product matrices. Value
of m used in our experiments is 4.

Journal of Computing and Information Science in Engineering SEPTEMBER 2013, Vol. 13 / 031002-5

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 09/23/2013 Terms of Use: http://asme.org/terms



4 Results and Discussion

We have implemented our system in Cþþ. We use the CUDA
API for the GPU-based ray tracing. For all of our experiments, we
use Windows 7 64-bit machine with Intel I5-750 2.66 GHz proces-
sor, NVIDIA GeForce 470 GTX GPU, and 8 GB of RAM.

4.1 Performance Comparison. We first show the perform-
ance gains achieved by using our GPU-based method. In our first
set of experiments, we use rigid microparticles and record the
amount of time it takes to compute the force. Our performance
results are shown in Tables 1 and 3. We compare the timings of
various methods: Ashkin’s traditional, CPU-based ray tracing,
GPU-based method that uses NMF, and GPU-based ray tracing
methods using single and double precision floating-point

arithmetic. For the first experiment, we performed force calcula-
tions on a single microparticle 5000 times placed at different loca-
tions around the focal point of the laser beam. We also varied the
number of rays that are used to describe the laser beam. As shown
in Table 1, when only one microparticle and 2562 rays are used to
represent the laser beam, the GPU-based force calculation is about
34 times faster than Ashkin’s method.

We compare precision among CPU- and GPU-based implemen-
tations of our approaches against CPU-based Ashkin’s method

Table 3 The time taken (in s) by the various methods to compute total force exerted by a laser
beam on 32 interacting microparticles computed 5000 times at different locations. It is interest-
ing to note that when the number of rays is low, brute-force ray tracing is faster than the ray
tracing method that uses a 3D grid data structure. This is due to the additional cost of creating
and maintaining the data structure.

Number of rays

Method 82 162 322 642 1282 2562

Ashkin (Float) 1.8877 7.7762 31.5119 128.1370 515.1390 2081.6000
Ashkin (Double) 1.7971 7.7572 32.0977 129.2160 519.8880 2101.7000
CPU Ray (Float) 0.2951 1.2400 5.1456 21.4900 86.4165 346.2620
CPU Ray (Double) 0.3103 1.3025 5.9534 23.8178 95.1179 379.2980
CPU Ray with 3D Grid (Double) 0.3831 1.3404 5.7862 22.8523 90.7224 360.8080
GPU NMF (Float) 1.3050 2.0442 3.5816 9.1022 30.7739 116.5450
GPU Ray (Float) 1.2649 1.6148 1.9824 3.7576 9.9187 33.3911
GPU Ray with 3D Grid (Float) 1.8859 1.8621 2.2662 3.6953 9.4589 31.5070

Table 2 Here we show the comparison of precision between various methods rounded up to
the nearest four digits. We take Ashkin’s method as the reference and compute the relative error
to compare other methods with an equal number of rays. As the number of rays increase, the
relative error decreases in general but the computational cost increases.

Number of rays

Method 82 162 322 642 1282 2562 5122

GPU NMF (Float) 0.0068 0.0047 0.0034 0.0028 0.0035 0.0025 0.0032
CPU Ray (Double) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CPU Ray (Float) 0.0005 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001
GPU Ray (Float) 0.0005 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005

Fig. 7 The final force contribution for each particle is calcu-
lated by subtracting values from the segment boundaries of an
array that contains the result of the parallel-prefix sum. In this
figure, we show how the final value of the scattering force is
computed for a particle.

Fig. 8 Here we show the time taken to compute the force
exerted by a laser beam containing 32 rays 5000 times on a
varying number of particles. We compare brute-force GPU ray
tracing against GPU ray tracing with a 3D grid. As the number
of particles increases, the use of a 3D grid data structure shows
a clear advantage.

031002-6 / Vol. 13, SEPTEMBER 2013 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 09/23/2013 Terms of Use: http://asme.org/terms



using equal number of rays and double-precision floating-point
arithmetic. We perform several comparisons by varying the num-
ber of rays to represent the laser beam. The results are shown in
Table 2. In general, the relative error decreases as the number of
rays increases. For NMF based computation, the relative error
decreases at first and then fluctuates slightly as we increase the
number of rays. This is because we discretized input angles while
creating the mapping table. Due to this, increasing the number of
rays while keeping the size of the mapping table constant, can
increase the amount of error. For regular computations, 322 is an
ideal number of rays to use to represent the laser as both the rela-
tive error and the computation cost are low.

For the second experiment, we performed force calculations
using a laser beam and 32 interacting microparticles computed
5000 times placed at different locations. The ray tracing methods
can capture the interaction of a laser with multiple particles while
Ashkin’s traditional method can only capture interaction of the
laser with a particle at a time ignoring the shadowing effects. For
the second experiment, we also show the performance difference

Fig. 9 An illustration of the shadowing phenomenon. (a)
shows the focal point of three laser beams at location
ð0:0; 0:0; 0:0Þ, ð�1:0;7:5;0:0Þ, and ð�1:0; 2:5; 0:0Þ. (b) shows the
movement of a single particle from ð0:0;�4:0; 0:0Þ to
ð0:0; 0:0; 0:0Þ. (c) shows the movement of same particle when
second particle is present at location ð�1:0;5:5;0:0Þ. Finally, (d)
shows the difference in force experienced by the first bead
caused by the shadowing phenomenon.

Fig. 10 An illustration of the shadowing phenomenon similar
to the previous figure. (a) shows the movement of a single parti-
cle from ð�4:0; 0:0; 0:0Þ to ð0:0;0:0;0:0Þ. (b) shows the movement
of same particle when second particle is present at location
ð�1:0; 5:5; 0:0Þ. Finally, (c) shows the difference in force experi-
enced by the first bead caused by the shadowing phenomenon.

Journal of Computing and Information Science in Engineering SEPTEMBER 2013, Vol. 13 / 031002-7

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 09/23/2013 Terms of Use: http://asme.org/terms



from the use of a spatial data structure while doing ray tracing. As
shown in Table 3, GPU-based force calculation that uses grid
based data structure is about 66 times faster than traditional Ash-
kin’s method and about 10 times faster than its CPU-based ray
tracing analog when 2562 rays are used to represent the laser
beam. As shown in Fig. 8, when the numbers of rays or particles
increases, the 3D grid performs better than the brute-force ray
tracing method. This is generally because of the overhead of creat-
ing, updating, and transferring the grid to the GPU.

4.2 Shadowing Phenomenon. In the traditional ray-tracing
community, the phenomenon of multiple refractions we are simu-
lating would be referred to as the second and higher-order refrac-
tions. However, since this is referred to as the shadowing
phenomenon by the optical tweezers community, this is the term
we shall use here.

We use two microparticles for these experiments. The first
microparticle moves along a path. The second microparticle is sta-
tionary and is gripped by two laser beams with one focal point
above and the other below the microparticle. The rays that are
incident on the second microparticle get refracted which can influ-
ence the number of rays that interact with the first microparticle.
Thus the presence of the second microparticle causes a change in
the amount of force being applied to the first microparticle. We
show this change through simulations.

In the first experiment, we simulate using a single silica bead of
size 5 lm. We use three downward pointing Gaussian laser beams
focused at locations ð0:0; 0:0; 0:0Þ, ð�1:0; 7:5; 0:0Þ, and
ð�1:0; 2:5; 0:0Þ, respectively. A bead is placed at ð0:0;�4:0; 0:0Þ
and it slowly moves to ð0:0; 0:0; 0:0Þ. In Fig. 9, we show the force
experienced by the bead as it goes from ð0:0;�4:0; 0:0Þ to
ð0:0; 0:0; 0:0Þ.

Now to show the shadowing phenomenon, we add an extra
bead at location ð�1:0; 5:5; 0:0Þ in the setup described above.
This bead acts like a lens and changes the direction of the rays
from the lasers. This causes the first bead to experience force from
secondary rays. We compute the force experienced by the bead as
it goes from ð0:0;�4:0; 0:0Þ to ð0:0; 0:0; 0:0Þ when the shadowing
phenomenon is occurring. In Fig. 9, we show the difference in the
amount of force experienced by the first microparticle. This
change adds instability and weakens the optical traps. We next
repeat the experiment but this time move the bead from
ð�4:0; 0:0; 0:0Þ to ð0:0; 0:0; 0:0Þ. Figure 10 shows the result of
force calculation with and without the shadow phenomenon.

In both experiments, shadowing effects change the applied
force significantly. This can change the behavior of the optical
traps. Experimentally validating the results of simulations is chal-
lenging. There is no direct way to measure force. The force needs
to be inferred from the observed motion. This requires a high
speed image capture, accounting for the Brownian motion, and
accounting for image blurring due to motion in the z-direction.
We are currently in the process of designing experiments to record
particle trajectories in the presence and absence of shadowing
phenomena.

Fig. 11 Here we show the arrangement of the microparticles in
the upward and downward configuration

Fig. 12 Downward configuration with spacing 2.5 lm between the lower microparticles
and laser moving with the velocity 22.4 lm/s. The two beads are trapped as the laser
moves. The top row shows the captured video and the bottom row shows the simulated
result.

031002-8 / Vol. 13, SEPTEMBER 2013 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 09/23/2013 Terms of Use: http://asme.org/terms



4.3 Calibration and Validation. We have calibrated our
system by using multiple recorded videos of the holographic opti-
cal tweezers system trapping a single freely moving microparticle.
The system is calibrated by estimating the laser power at the
objective lens by trapping a freely diffusing particle and observing
its velocity as it falls into the trap. We used estimated laser power
for our simulation. We added a repulsive force acting upward in
the positive Y direction in the simulation to model the electrostatic
force from the surface that prevents the beads from falling down
to the surface. The distance of each microparticle from the bottom
of the surface can vary and they can all have different charges,
resulting in different amounts of repulsive force. We estimated
the repulsive force based on the observed behavior. Using the esti-
mated power of the laser and the estimated repulsive force, we
were able to simulate the observed behavior of the microparticles.

Using our calibrated system we analyze the stability of gripper
configurations reported in [5]. We are able to successfully predict
which microparticles in a particular gripper formation are more
likely to jump out of the optical traps due to the shadowing effect
when the gripper moves faster than the allowable speed. We con-
sider two different gripper configurations for our analysis. The
first configuration has two microparticles trapped above the image
plane while the third microparticle is trapped below. In the second
configuration, two microparticles are trapped below the image
plane while the third one is slightly above. Both configurations
are shown in Fig. 11. We consider three different gripper geome-
tries for each type of gripper configuration. For the X-Z distance
between microparticles, we use 0.0, 2.5, and 4.0 lm. We analyze
the gripper stability for three different velocities, namely 3.8,
15.0, and 22.4 lm/s.

In the upward configuration, all three particles are moved suc-
cessfully and the configuration is stable. Our simulator is able to
accurately reproduce the behavior of the configuration observed in
physical experiments.

Downward configuration where the lower beads are in contact
with each other can be stably held while transporting at laser trap
velocities of 3.8, 15.0, and 22.4 lm/s. On the other hand, the
configuration where the beads are 2.5 lm apart is stable only at

lower velocities of 3.8 and 15.0 lm/s. One of the lower beads falls
behind while transporting with 22.4 lm/s and hence the configura-
tion breaks down (see Fig. 12). However, in case of the configura-
tions with the lower beads separated by 4 lm, only the upper bead
can be steered by the laser at 22.4 lm/s (see Fig. 13). The configu-
ration remains stable while transporting with the lower velocities

Fig. 13 Downward configuration with spacing 4.0 lm between lower two microparticles
and laser moving with the velocity 22.4 lm/s. Only one bead is trapped as the laser
moves. The top row shows the captured video and the bottom row shows the simulated
result.

Fig. 14 Here we show the comparison between the force cal-
culated using our method and the force computed using stiff-
ness. Here the focal point of the laser is located at ð0:0; 0:0; 0:0Þ
and we compute force by placing the microparticle along the Y-
axis. Both forces are similar. The force computed using stiff-
ness is an approximation but we validate our result since the
stiffness value computed by Singer et al. [32] is calibrated.

Journal of Computing and Information Science in Engineering SEPTEMBER 2013, Vol. 13 / 031002-9

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 09/23/2013 Terms of Use: http://asme.org/terms



(3.8 and 15.0 lm/s). Our simulation is able to successfully predict
the breaking point for the configurations (see Figs. 12 and 13).

We have also compared and validated force calculated using
our method against the force computed using stiffness F ¼ �kd,
where k is the stiffness and d is the displacement distance between
the center of the microparticle and the focal point of the laser.
Here, we use the stiffness value computed by Singer et al. [32] for
a microparticle of diameter 5 lm and the laser with power 0.05 W.
In Fig. 14, we show the force computed by both methods when
the microparticle is placed at various distances from the focal
point. We have found the values to be comparable. Although the
force computed using stiffness is an approximation, we have
compared and validated our result because the stiffness value
computed by Singer et al. [32] is calibrated.

5 Conclusion and Future Work

The GPU-based system we have presented in this paper
computes the forces when laser beams interact with multiple
microparticles and allow a scientist to study the shadowing phe-
nomenon. Studying these phenomenon in real-time is vital as it
allows efficient planning required for trapping and manipulating
microparticles. When evaluating the force exerted by a laser beam
on 32 interacting particles, our GPU-based application is able to
get approximately a 66-fold speed up compared to the single core
CPU implementation of traditional Ashkin’s approach and 10-fold
speedup over our approach’s serial CPU implementation. We
have also presented an alternative way to calculate the force
exerted by the laser that exploits the coherence of the mapping
from the incident ray to the components of force and the transmit-
ted ray by using NMF.

In the future we plan to perform experimental investigation to
validate our computational model by performing tests on scenar-
ios that can be validated experimentally. Currently every time
step is computed independently. Computing the force over a few
time steps by efficiently processing the incremental changes might
provide further speedup.

Acknowledgment

This work has been supported in part by the NSF Grants No.
CCF 04-29753, CNS 04-03313, CCF 05-41120, and CMMI 08-
35572. We also gratefully acknowledge the support provided by
the NVIDIA CUDA Center of Excellence award to the University
of Maryland. Any opinions, findings, conclusions, or recommen-
dations expressed in this article are those of the authors and do not
necessarily reflect the views of the research sponsors.

References
[1] Ashkin, A., 1992, “Forces of a Single-Beam Gradient Laser Trap on a Dielec-

tric Sphere in the Ray Optics Regime,” Biophys. J., 61, pp. 569–582.
[2] Banerjee, A. G., Balijepalli, A., Gupta, S. K., and LeBrun, T. W., 2009,

“Generating Simplified Trapping Probability Models From Simulation of Opti-
cal Tweezers System,” J. Comput. Information Sci. Eng., 9, p. 021003.

[3] Koss, B., Chowdhury, S., Aabo, T., Losert, W., and Gupta, S. K., 2011,
“Indirect Optical Gripping With Triplet Traps,” J. Opt. Soc. Am. B, 28(5), pp.
982–985.

[4] Banerjee, A. G., Chowdhury, S., Losert, W., and Gupta, S. K., 2011, “Survey
on Indirect Optical Manipulation of Cells, Nucleic Acids, and Motor Proteins,”
J. Biomed. Opt., 16(5), p. 051302.

[5] Chowdhury, S., Svec, P., Wang, C., Losert, W., and Gupta, S., 2012, “Gripper
Synthesis for Indirect Manipulation of Cells Using Holographic Optical
Tweezers,” IEEE International Conference on Robotics and Automation, pp.
2749–2754.

[6] Chowdhury, S., Thakur, A., Wang, C., Svec, P., Losert, W., and Gupta, S. K.,
2012, “Automated Indirect Transport of Biological Cells With Optical
Tweezers Using Planar Gripper Formations,” IEEE International Conference on
Automatated Scientific Engineering.

[7] Thakur, A., Chowdhury, S., Wang, C., Svec, P., Losert, W., and Gupta, S. K.,
2012, “Automated Indirect Optical Micromanipulation of Biological Cells
Using Indirect Pushing for Minimizing Photo-Damage,” in Proceedings of the
ASME Int. Des. Eng. Tech. Conf. and Comp. Inf. Eng. Conf.

[8] Grier, D. G., 2003, “A Revolution in Optical Manipulation,” Nature, 424, pp.
810–816.

[9] Banerjee, A. G., Pomerance, A., Losert, W., and Gupta, S. K., 2010,
“Developing a Stochastic Dynamic Programming Framework for Optical
Tweezer-Based Automated Particle Transport Operations,” IEEE Trans.
Autom. Sci. Eng., 7(2), pp. 218–227.

[10] Banerjee, A. G., Chowdhury, S., Losert, W., and Gupta, S. K., 2012, “Real-
Time Path Planning for Coordinated Transport of Multiple Particles Using
Optical Tweezers,” IEEE Trans. Automat. Sci. Eng., 9(4), Oct., pp. 669–678.

[11] Chowdhury, S., Svec, P., Wang, C., Seale, K., Wikswo, J. P., Losert, W., and
Gupta, S. K., 2011, “Investigation of Automated Cell Manipulation in Optical
Tweezers-Assisted Microfluidic Chamber Using Simulations,” in Proceedings
of the ASME Int. Des. Eng. Tech. Conf. and Comp. Inf. Eng. Conf.

[12] Chowdhury, S., Svec, P., Wang, C., Seale, K., Wikswo, J. P., Losert, W., and
Gupta, S. K., 2012, “Automated Cell Transport in Optical Tweezers-Assisted
Microfluidic Chambers,” IEEE Trans. Automat. Sci. Eng. (to be published).

[13] Chowdhury, S., Thakur, A., Wang, C., Svec, P., Losert, W., and Gupta, S. K.,
2013, “Automated Indirect Manipulation of Irregular Shaped Cells With
Optical Tweezers for Studying Collective Cell Migration,” IEEE International
Conference on Robotics and Automation, Karlsruhe, Germany, May 6–10.

[14] Chowdhury, S., Thakur, A., Wang, C., Svec, P., Losert, W., and Gupta, S. K.,
2013, “Automated Manipulation of Biological Cells Using Gripper Formations
Controlled by Optical Tweezers,” IEEE Trans. Automat. Sci. Eng. (to be
published).

[15] Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S., 1986, “Observation
of a Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Opt.
Lett., 11(5), pp. 288–290.

[16] Bianchi, S., and Leonardo, R. D., 2010, “Real-Time Optical Micro-
Manipulation Using Optimized Holograms Generated on the GPU,” Comput.
Phys. Commun., 181(8), pp. 1444–1448.

[17] Balijepalli, A., LeBrun, T., and Gupta, S. K., 2010, “Stochastic Simulations
With Graphics Hardware: Characterization of Accuracy and Performance,”
J. Comput. Information Sci. Eng., 10, p. 011010.

[18] Patro, R., Dickerson, J. P., Bista, S., Gupta, S. K., and Varshney, A., 2012.
“Speeding Up Particle Trajectory Simulations Under Moving Force Fields
Using GPUs,” ASME J. Comput. Information Sci. Eng., 12(2), p. 021006.

[19] Sraj, I., Szatmary, A. C., Marr, D. W. M., and Eggleton, C. D., 2010, “Dynamic
Ray Tracing for Modeling Optical Cell Manipulation,” Opt. Express, 18(16),
pp. 16702–16714.

[20] Zhou, J.-H., Ren, H.-L., Cai, J., and Li, Y.-M., 2008, “Ray-Tracing Methodol-
ogy: Application of Spatial Analytic Geometry in the Ray-Optic Model of
Optical Tweezers,” Appl. Opt., 47, pp. 6307–6314.

[21] Harris, M. J., Coombe, G., Scheuermann, T., and Lastra, A., 2002, “Physically-
Based Visual Simulation on Graphics Hardware,” in Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware,
HWWS’02, Eurographics Association, pp. 109–118.

[22] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.
E., and Purcell, T., 2007, “A Survey of General-Purpose Computation on
Graphics Hardware,” Computer Graphics Forum, 26(1), pp. 80–113.

[23] Harris, M., 2005, “Fast Fluid Dynamics Simulation on the GPU,” In SIG-
GRAPH’05: ACM SIGGRAPH 2005 Courses, ACM, p. 220.

[24] Li, W., Wei, X., and Kaufman, A. E., 2003, “Implementing Lattice Boltzmann
Computation on Graphics Hardware,” The Visual Computer, 19(7–8), pp.
444–456.

[25] Liu, Y., Liu, X., and Wu, E., 2004, “Real-Time 3D Fluid Simulation on GPU
With Complex Obstacles,” in Pacific Conference on Computer Graphics and
Applications, IEEE Computer Society, pp. 247–256.

[26] Wei, X., Zhao, Y., Fan, Z., Li, W., Qiu, F., Yoakum-Stover, S., and Kaufman,
A. E., 2004, “Lattice-Based Flow Field Modeling,” IEEE Trans. Visualization
and Computer Graphics, 10(6), pp. 719–729.

[27] Phillips, E. H., Zhang, Y., Davis, R. L., and Owens, J. D., 2009, “Rapid Aero-
dynamic Performance Prediction on A Cluster of Graphics Processing Units,”
AIAA Aerospace Sciences Meeting, No. AIAA 2009-565.

[28] Carr, N. A., Hoberock, J., Crane, K., and Hart, J. C., 2006, “Fast GPU Ray
Tracing of Dynamic Meshes Using Geometry Images,” Graphics Interface,
Canadian Human-Computer Communications Society, pp. 203–209.

[29] Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan, P., 2002, “Ray Tracing on
Programmable Graphics Hardware,” ACM Trans. Graphics, 21(3), pp.
703–712.

[30] Fujimoto, A., Tanaka, T., and Iwata, K., 1986, “Arts: Accelerated Ray-Tracing
System,” IEEE Computer Graphics and Applications, 6, pp. 16–26.

[31] Lawrence, J., Rusinkiewicz, S., and Ramamoorthi, R., 2004, “Efficient BRDF
Importance Sampling Using a Factored Representation,” ACM Trans. Graphics,
23, pp. 496–505.

[32] Singer, W., Bernet, S., and Ritsch-Marte, M., 2001, “3D-Force Calibration of
Optical Tweezers for Mechanical Stimulation of Surfactant-Releasing Lung
Cells,” Laser Phys., 11(11), pp. 1217–1223.

031002-10 / Vol. 13, SEPTEMBER 2013 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 09/23/2013 Terms of Use: http://asme.org/terms

http://dx.doi.org/10.1016/S0006-3495(92)81860-X
http://dx.doi.org/10.1115/1.3130784
http://dx.doi.org/10.1364/JOSAB.28.000982
http://dx.doi.org/10.1117/1.3579200
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1109/TASE.2009.2026056
http://dx.doi.org/10.1109/TASE.2009.2026056
http://dx.doi.org/10.1109/TASE.2012.2200102
http://dx.doi.org/10.1364/OL.11.000288
http://dx.doi.org/10.1364/OL.11.000288
http://dx.doi.org/10.1016/j.cpc.2010.04.012
http://dx.doi.org/10.1016/j.cpc.2010.04.012
http://dx.doi.org/10.1115/1.3270248
http://dx.doi.org/10.1115/1.4005718
http://dx.doi.org/10.1364/OE.18.016702
http://dx.doi.org/10.1364/AO.47.006307
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1007/s00371-003-0210-6
http://dx.doi.org/10.1109/TVCG.2004.48
http://dx.doi.org/10.1109/TVCG.2004.48
http://dx.doi.org/10.1145/566654.566640
http://dx.doi.org/10.1109/MCG.1986.276715
http://dx.doi.org/10.1145/1015706.1015751

	s1
	l
	s2
	F1
	F2
	s3
	F3
	s3A
	s3B
	UE1
	UE2
	F5
	F4
	s3C
	s3D
	T1
	F6
	s4
	s4A
	T3
	T2
	F7
	F8
	F9
	F10
	s4B
	F11
	F12
	s4C
	F13
	F14
	s5
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32

