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Abstract Classification and visualization of structures in the human brain provide
vital information to physicians who examine patients suffering from brain diseases
and injuries. In particular, this information is used to recommend treatment to pre-
vent further degeneration of the brain. Diffusion kurtosis imaging (DKI) is a new
kind of magnetic resonance imaging rapidly gaining broad interest in the medical
imaging community due to its ability to provide intricate details of the underlying
microstructural characteristics of the whole brain. DKI produces a fourth-order ten-
sor at every voxel of the imaged volume; unlike traditional diffusion tensor imaging
(DTI), DKI measures the non-Gaussian property of water diffusion in biological tis-
sues. It has shown promising results in studies on changes in grey matter and mild
traumatic brain injury, a particularly difficult form of TBI to diagnose. In this paper,
we use DKI imaging and report our results of the classification and visualization
of various tissue types, diseases, and injuries. We evaluate segmentation performed
using various clustering algorithms on different segmentation strategies including
fusion of diffusion and kurtosis tensors. We compare our result to the well-known
MRI segmentation technique based on Magnetization-Prepared Rapid Acquisition
with Gradient Echo (MPRAGE) imaging.
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1 Introduction

Traumatic brain injury (TBI), caused by blows to the head, is a leading cause of
death and disabilities. In 2010, in the United States alone, TBI resulted in 2.5 mil-
lion hospitalizations and 50,000 deaths [5]; Survivors often face lifelong disabili-
ties. Medical professionals examine, diagnose, and treat these injuries; once injury
occurs, a major focus is on how to prevent further extensive degeneration of the
brain. The examination can significantly impact recovery, as subsequent diagnosis
and treatment depend on it. Different types of medical imaging modalities, including
magnetic resonance imaging (MRI) , are used for examining TBI injuries.

(a) Diffusion Tensor

(b) Kurtosis Tensor

Fig. 1 The diffusion tensor (DT) and kurtosis tensors (KT) visualized using glyph overlays. Each
shape shows properties of the underlying tissue. The diffusion values are high and isotropic in the
cerebral spinal fluid (CSF) and gray matter (GM) regions, whereas they are low and anisotropic in
the white matter (WM). The kurtosis values are high around the injury and the WM region.

MRI is a non-invasive imaging device that uses powerful magnetic fields to image
the diffusion patterns in biological tissues. Diffusion Tensor Imaging (DTI) is an
increasingly popular MRI technique that detects diffusion of water to infer under-
lying tissue microstructure. DTI assumes that the water diffusion patterns follow
a Gaussian distribution; it can effectively measure the dominant direction of water
diffusion in tissues, and is widely used in studying white matter tracts in the brain.
However, the Gaussian distribution assumption of the DTI fails whenever diffusion
is restricted by injury or diseases. To address this problem, Jensen and Helpern [15]
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introduced diffusion kurtosis imaging (DKI) , which measures the degree of the dif-
fusional non-Gaussianity of water molecules in biological tissues. DKI has gained
attention in the medical imaging community because of its ability to show a more
detailed structure of underlying tissues and because it shows promise in detecting
micro-structural tissue changes caused by mild traumatic brain injuries and other
neurological diseases [43]. In DKI, second-order diffusion tensors (DT) and fourth-
order kurtosis tensors (KT) are calculated. These tensors are spatio-angular fields
that characterize the underlying imaged tissue, as shown in Figure 1. Both DT and
KT capture properties of underlying tissues that can be used to classify the whole
brain by different tissue types. In both of these datasets, each sample point can be
represented by a unique shape defined by its directional data. The per-sample shape
of a spatio-angular field in KT is highly irregular and complicated compared with
the DT, because KT is capable of estimating finer properties of the imaged tissue.

Classification and visualization of structures in the human brain provides vital in-
formation to medical professionals examining patients who suffer from brain dis-
eases and injuries. Detailed information on the imaged tissues can help these pro-
fessionals decide what actions to take to prevent further degeneration of the brain.
Tissue segmentation is also important in studying the structure and function of
the brain. There are numerous medical literature reviews that detail the classifi-
cation of the brains structure , fusing data from either single or multiple imaging
techniques, such as DTI and high-angular-resolution diffusion imaging (HARDI)
[12, 24, 29, 28, 33, 34]. Most methods rely on utilizing a statistical summarization

of the datasets, such as the mean value, by identifying appropriate ranges of various
tissue types. This requires systematic domain knowledge and is error-prone because
initial tissue selection used for training determines the quality of the output of clas-
sification. Also, it is difficult to find tissues for rare diseases. To our knowledge, no
work has been done that performs segmentation by fusing the per-sample shapes of
Gaussian and non-Gaussian diffusion estimated by diffusion and kurtosis tensors in
DKI. In this paper, we report our classification and visualization results from DKI
tensors based on tissue types, diseases, and injuries. We evaluate different segmenta-
tion strategies, and compare them to the latest MRI segmentation technique based on
magnetization prepared rapid acquisition with gradient echo (MPRAGE) imaging.
We also carry out efficient visualization of these segments using spherical harmon-
ics lighting functions, to facilitate insights into the micro-structural properties of the
imaged tissue volume.

2 Related Work

Numerous studies and literature reviews have been conducted on the segmentation
and visualization of brain tissues using various types of MRI.
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Prckovska et al. [34] use high angular resolution diffusion imaging anisotropy mea-
sures to classify different diffusion models (isotropic, Gaussian, and non-Gaussian).
Their approach requires an estimation of threshold intervals to perform classifica-
tion, which can be complex and requires a advanced level of domain knowledge.

In another study, Prckovska et al. [33] perform semi-automatic human-assisted clas-
sification of diffusion structures to separate different diffusion models, such as
isotropic, anisotropic Gaussian, and non-Gaussian areas. A domain expert selects
regions for all three different tissue types. Then the distribution is calculated and
used to perform segmentation. Researchers also introduce a hybrid approach to vi-
sualize the structure of diffusion. Ellipsoids are used to display a simple diffusion
shape, and ray-traced spherical harmonics glyphs display the complex structures
based on the segmentation result.

Hasan et al. [12] use DTI to segment and partition cerebrospinal fluid (CSF) , grey
matter (GM) , and white matter (WM) . In their method, domain experts manually
select 50 regions-of-interest for each tissue type. These regions are then used to cre-
ate a tissue classification threshold used in a multidimensional supervised clustering
procedure to segment the whole brain into three tissue types.

Lui et al. [28] use multiple domain-based attributes, such as the apparent diffu-
sion coefficient and fractional anisotropy, to automatically segment CSF, GM, and
WM. The apparent diffusion coefficient and eigenvectors from the diffusion ten-
sor are used to separate CSF from other regions, such as GM and WM, then the
fractional anisotropy value is employed to separate GM and WM. An expectation-
maximization algorithm combined with a hidden Markov random field model is
used to perform automatic segmentation.

Recently, constrained spherical deconvolution has been deployed on diffusion-
weighted datasets to classify various tissue types and find fiber-track orientations
[18, 35]. Jeurissen et al. [18] performed constrained spherical deconvolution on
multi-shell diffusion weighted data with high angular resolution. Using a multi-
shell multi-tissue model, they were directly able to classify CSF, GM, and WM. In
this paper, we focus on DT and KT to perform classification. These datasets are
acquired using significantly lower angular resolution readings compared to other
diffusion imaging techniques such as high angular resolution diffusion imaging.

A few studies have looked into the classification and visualization aspects of DKI
data. Lu et al. [29] use the spherical harmonics basis to analyze DKI datasets. Re-
searchers limited the harmonic analysis to three bands (0, 2, and 4) and used coef-
ficient summation (C0, C2, and C4) to describe the rotationally invariant property
of each band. Then WM, GM, and fiber crossings are segmented based on the frac-
tional anisotropy and C0 coefficient only, where C0 is a directionally-averaged ap-
parent kurtosis coefficient equivalent to the mean kurtosis. In their paper, C0 values
were 0.74±0.03, 1.09±0.01, and 0.84±0.02 for GM, WM, and thalamus, respec-
tively. It is interesting to note that, in their segmentation, they did not use C2 and
C4, which are associated with a higher frequency signal in the rotationally invariant
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spherical harmonics coefficient. This higher frequency information has not yet been
fully explored. In this paper, we classify brain tissues using the per-voxel shapes of
DT and KT, which provides a better grouping of similar structures and also enhances
the likelihood of detecting anomalies.

Volume rendering is widely used to visualize MRI datasets. A considerable amount
of work has been done to improve visualization by incorporating advanced shad-
ing techniques, multiple depth cues, transfer functions, multiple lighting, and global
illumination [6, 13, 14, 22, 23, 25, 26, 27, 30, 36, 39, 41, 42]. These studies on
volume rendering contain significant ways to improve the visual quality of the vol-
ume being displayed. This work on visualization builds on our previous work [2],
in which we used spherical harmonics lighting functions to facilitate a more mean-
ingful visualization of dense spatio-angular datasets. In this work, we extend this
method to support automatic segmentation and visualization of the entire brain.

3 Overview

Fig. 2 An overview of our proposed method. First, a large number of diffusional readings are
recorded by MRI. Then, we compute tensors and other domain-specific attributes. Next, the tensors
are converted to a spherical harmonic form. After that, we use spherical harmonics approximation
of DT and KT to classify various tissue types. Finally, by combining the dynamic spherical har-
monics lighting functions and the segmented data, the image is rendered. The output is either a
planar-rendered image, a volume-rendered image, or both.

The proposed method takes spatio-angular fields (such as DT and KT) as inputs and
converts them into a spherical harmonics representation using spherical harmonics
basis functions. Tissues are then classified using the spherical harmonics represen-
tation of both the DT and DK. Depending on the task and the complexity of the
field, we choose to configure either single or multiple spherical harmonics lighting
functions for visualization. Finally, by combining classified segments, the dynamic
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spherical harmonics lighting functions, and the input spatio-angular field, we render
the image. We provide two modes to view the final output using either planar or
volume rendering. An overview of our approach is shown in Figure 2.

4 Background

4.1 Diffusion Tensor Imaging

DTI assumes a Gaussian diffusion process of water in the imaged tissue. The Taylor
series expansion [19] is used to approximate the diffusion-weighted signal for each
gradient direction, expressed by :

ln [S (g,b)] = ln [S0]−bDapp (g)+O
(
b2) ,

Dapp (g) =
3

∑
i=1

3

∑
j=1

gig jDi j,

where g is the diffusion gradient, b is the MRI acquisition parameter b-value ex-
pressed in s/mm2, S0 is the signal without diffusion weighting, Di j is the element
of the diffusion tensor, and Dapp is the apparent diffusion coefficient. The diffusion
tensor, which is a second-order symmetric tensor with six independent elements, is
calculated for each voxel. By using eigen-decomposition of the diffusion tensor we
compute the dominant diffusion directions.

4.2 Diffusion Kurtosis Imaging

DKI measures the non-Gaussian property of water diffusion. The traditional DTI
technique estimates the tensor, based on the assumption that water diffusion pat-
terns follow a Gaussian distribution. This is true for longer diffusion time scales
or when there are no obstructions. However measuring diffusion over shorter time
periods shows the local diffusion to adhere to the tissue micro-environment. This
diffusion heterogeneity gives rise to a non-Gaussian probability distribution func-
tion for water diffusion; a limitation for traditional DTI which assumes diffusion
to have Gaussian distribution [16]. To measure the degree of the diffusional non-
Gaussianity of water molecules in the imaged tissues, Jensen and Helpern [15] in-
troduced DKI. Compared to DTI, data acquisition needs are much larger in DKI; the
kurtosis tensor is often computed using data from 30 diffusional directions, using
at least two non-zero diffusion sensitivities. Common b-values used in DKI acquisi-
tion are 0, 1000, and 2000s/mm2, and the scan time can be as long as 10 min. While
other forms of higher-order diffusion-weighted imaging techniques exist, such as
high angular resolution diffusion imaging or diffusion spectrum imaging, they are
less clinically practical because they take a considerably longer time to scan as they
require a higher number of diffusional direction and b-values. The Taylor series
equation in Section 4.1 is further expanded to measure the non-Gaussian property
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of the water diffusion [15, 16]. A fourth-order diffusion kurtosis tensor is calculated
from the diffusional measurements in DKI using the equation described by Jensen
and Halpern [16],

ln [S (g,b)] = ln [S0]−bDapp (g)+
1
6

b2Dapp (g)
2 Kapp (g)+O

(
b3) ,

Kapp (g) =
1

Dapp (g)
2

3

∑
i=1

3

∑
j=1

3

∑
k=1

3

∑
l=1

gig jgkglKi jkl ,

Ki jkl = MD2Wi jkl ,

where MD is the mean diffusivity, Kapp is the apparent kurtosis, and Wi jkl is the
element of kurtosis tensor. The kurtosis tensor is a symmetric fourth-order tensor
with 15 independent elements. In full form, the signal in each gradient direction is
described by

ln [S (g,b)] = ln [S0]−b
3

∑
i=1

3

∑
j=1

gig jDi j +
1
6

b2
3

∑
i=1

3

∑
j=1

3

∑
k=1

3

∑
l=1

gig jgkglKi jkl ,

4.3 Spherical Harmonics

We approximate DT and KT using spherical harmonics basis functions that are later
used for classification and visualization. Spherical harmonics are basis functions
used to represent and reconstruct any function on the surface of a unit sphere. Spher-
ical harmonics are defined over the surface of a sphere in the same way Fourier func-
tions are defined on a circle [32]. In computer graphics and visualization, spherical
harmonics are used for lighting scenes with low frequency lights, for subsurface
scattering, and for global illumination, because they can inexpensively approximate
a computationally-complex physical process [4, 20, 10, 36, 37, 38, 42].

Spherical harmonics are ortho-normal functions defined by

Y m
l (θ ,φ) = (−1)m

√
2l +1

4π

(l−m)!
(l +m)!

Pm
l (cosθ)eimφ ,

where l is the band index, m is the order, Pm
l is an associated Legendre polynomial,

and (θ ,φ) is the representation of the direction vector in the spherical coordinate.
We use real-valued spherical harmonics because the values used to define spatio-
angular fields are positive and real.

To convert the function f (θ ,φ) into a spherical harmonics basis, spherical harmon-
ics coefficients am

l are approximated using the equation

am
l =

∫
s

f (θ ,φ)Y m
l (θ ,φ)ds,
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A benefit of using spherical harmonics representation is that integrating two func-
tions over the sphere can be estimated in an inexpensive way by performing a dot
product of their spherical harmonics coefficients [3, 20].

∫
U(s)×V (s)ds =

l2

∑
i=0

ui(s)× vi(s),

where U and V are two functions defined on the surface of a sphere, and u(s) and
v(s) are their spherical harmonics coefficients.

5 Image Acquisition and Pre-processing

The 3T Siemens Tim Trio Scanner (Siemens Medical Solutions; Erlangen, Ger-
many) was used to perform imaging. Diffusion weighted images were obtained with
b = 1000,2000s/mm2 in 30 directions, together with 4 b0 images, in-plane resolu-
tion = 2.7mm2, echo time/time repetition = 101ms/6000ms at a slice thickness of
2.7mm with two averages. DKI reconstruction was carried out on each voxel us-
ing a MATLAB program, as described by Zhuo et al. [43]. There are also newer
alternative methods for computing kurtosis tensors by Ghosh et al. [9] and Tax et
al. [40].

Once diffusion and kurtosis tensors are computed, we represent the shape of these
tensors by using spherical harmonics approximation. From the diffusion and the
kurtosis tensors, we use Dapp and Kapp to compute the shapes of Gaussian and non-
Gaussian diffusion. Each shape is then represented in the spherical harmonics basis
by computing spherical harmonics coefficients am

l . Based on the complexity of the
shape, the number of coefficients used in spherical harmonics representation varies.
The shape of the diffusion tensor is simpler than the kurtosis tensor. As described
by Lu et al. [29], we used bands 1, 3, and 5 to represent the shape of the symmetric
kurtosis tensor. This can be done using 15 spherical harmonics coefficients (there
are 25 coefficients in total, but bands 2 and 4 are not used). Bands (> 5) can be used
too; however, high frequency data contains more noise, as discussed in [29]. These
spherical harmonics coefficients capture the shape, magnitude, and direction of the
tensors, which are used for segmentation and visualization.

5.1 Classification Reference Datasets

To compare various classification approaches, we perform tissue classification us-
ing 3D T 1-weighted MPRAGE images, which is commonly used for brain tissue
segmentation. These images were segmented to CSF, GM and WM using the SPM8
software package [1], and they served as the ground truth. The tissue masks were
then aligned and under sampled to the DKI space through co-registration of the frac-
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tional ansiotropy map and the WM tissue probability map, also through SPM8. As
an initial step, we classify the DKI derived maps to different tissue types. It should
be noted that T1-weighted MPRAGE images may not always be available, and that
the image distortion inherent in diffusion weighted image may have an effect on
co-registration, leading to inaccurate tissue classification. We demonstrate a method
that can classify the tissue type reliably based on the DKI data.

6 Classification

Classifying spherical harmonics volume fields into smaller sub-regions is beneficial
for both visualization and analysis. Local features can be enhanced or suppressed as
desired, lighting functions can be optimized if the classification captures complex-
ity of the spherical harmonics field, and grouping simplifies the analysis process
because it can reflect domain-specific information. While there are several ways
to accomplish segmentation in volume rendering, a popular method is to examine
the intensity-gradient histogram to find the edge boundaries in order to segment
different regions. In practice, there are different types of soft tissues in an image,
and the boundaries may not be clearly defined. Instead of scalar values, our dataset
contains irregular multi-dimensional geometric shapes. Furthermore, these datasets
come with multiple attributes, which must be examined carefully in order to do the
segmentation. This process can be very difficult. To classify the dataset, we examine
two approaches: domain-specific classification and shape based classification.

(a) (b) (c)

Fig. 3 The Gaussian mixture model is applied to mean diffusion and mean kurtosis data shown
in Figure 3(a). Three means are used to classify CSF, GM, and WM. We compare segmentation
performed using MPRAGE Figure 3(b) with GMM based segmentation performed using mean
diffusion (MD) and mean kurtosis (MK) images Figure 3(c).
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6.1 Domain specific classification

In DKI, several domain-specific attributes having biological relevance are com-
puted. They are mean diffusion, fractional anisotropy, and mean kurtosis. To apply
domain-specific classification, we apply the popular clustering algorithms K-means
[11] and Gaussian mixture models (GMM) [31] on the mean kurtosis and mean
diffusion. The relation between the mean diffusion and kurtosis has been explored
by Jensen et al. [17]. They both capture properties of the imaged tissue. Here we use
K-means and GMM to automatically cluster the dataset into segments. The results
of GMM-based classification can be seen in Figure 3.

(a) (b)

(c) (d) (e)

Fig. 4 We compare segmentation performed using MPRAGE image (Figure 4(a)) with segmenta-
tion performed by applying K-means (with k = 3) on a rotationally-invariant spherical harmonics
approximation of diffusion and kurtosis tensors (Figure 4(b)). Grey, green, and blue represent CSF,
GM, and WM respectively. In Figure 4(c), Figure 4(d), and Figure 4(e), we show the degree of
membership of each pixel to different segments.

6.2 Shape-based classification

We use the shape of the DT/KT tensor at each voxel to perform shape based clas-
sification across the entire volume. When comparing the shape of tensors, we con-
sider two components: structure of the tensors and their orientation. Here we focus
on just the shape by using the rotationally invariant spherical harmonics form for
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classification. The rotationally invariant spherical harmonics form is computed by
performing the summation of all the spherical harmonic coefficients within the same
band as described by [8, 21]. Coefficients of the spherical function become

R( f (θ ,φ)) = {‖ f0(θ ,φ)‖ ,‖ f1(θ ,φ)‖ , ....,‖ f∞(θ ,φ)‖}

where

fl(θ ,φ) =
l

∑
m=−l

am
l Y m

l (θ ,φ)

Shape-based classification is a general approach that can be applied to any spatio-
angular field. To categorize data into segments, clustering-based algorithms, K-
means [11] and GMM are applied to the rotationally-invariant spherical harmonics
attribute. The application of these clustering algorithms on shape-based attributes
will group shapes together based on centroids or density. To apply these algorithms,
we first adjust the rotationally invariant spherical harmonics representation of each
dataset so that they are centered on the origin and have a unit standard deviation.
R
′
l =

Rl−µ{R0 ,R1 ,...,RL}
σ{R0 ,R1 ,...,RL}

, where L is total number of bands used. This normalization is

an important step as different datasets, such as rotationally invariant spherical har-
monics approximation of diffusion and kurtosis tensors, might have different data
distribution. If one dataset is more compact than another, the properties of the com-
pact dataset might not be well represented after segmentation. An extra weighting
variable can also be applied depending on the need. Once the data is adjusted, we
apply the clustering algorithms.

We have explored shape-based classification to segment various tissue types. For
the KT dataset, we have three coefficients (R

′
0dk

,R
′
2dk

,R
′
4dk

) for each voxel from
the rotationally-invariant spherical harmonics attribute. For the DT and KT dataset
we have six coefficients (R

′
0dt
,R
′
2dt
,R
′
4dt
,R
′
0dk

,R
′
2dk

,R
′
4dk

), three coefficients each for
the diffusion and kurtosis tensors. The shape of the diffusion tensor characterizes
the underlying Gaussian diffusion profile, whereas the kurtosis tensor describes the
non-Gaussian diffusion profile. We cluster the dataset into 3 different segments and
compare the result with the tissue classification performed on an MPRAGE image
based on data from 8 normal subjects. In Figure 4, we show tissue classification
performed on an MPRAGE image (Figure 4(a)) along with segmentation performed
by applying K-means (with k = 3) on the rotationally-invariant spherical harmon-
ics approximation of the combined DT/KT dataset (Figure 4(b)). In Figure 4(c),
Figure 4(d), and Figure 4(e) we show degree of membership of each pixel with its
segment.

In the study by Falangola et al. [7], three distinct peaks for CSF, GM, and WM
were observed in the MK histogram around 0.45, 0.75, and 1.25 respectively in the
frontal lobe white matter. We compare segmentation result by applying the K-means
algorithm (with k = 3) to the rotationally invariant form of the spherical harmonics
approximation of diffusion and kurtosis with MPRAGE-based segmentation.
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Fig. 5 Histogram plot of mean kurtosis (MK) for MPRAGE image and segmentation performed
using K-means algorithm (with k = 3) on the rotationally invariant form of the spherical harmonics
approximation of diffusion and kurtosis tensors. The peaks from both MPRAGE and the DT/KT
segmentation are aligned with each other, which shows a good match between the two segmenta-
tion methods.

Segmentation Type Classification Percentage Percentage
Type match mean match STD

GMM on MK Domain 61.61 02.59
GMM on MD and MK Domain 54.55 14.71
K-means on MD and MK Domain 61.43 02.94
GMM on RI DT/KT Shape 68.35 16.00
K-means on RI KT Shape 64.92 03.09
K-means on RI DT/KT Shape 77.50 01.32

Table 1 Comparison of various segmentation methods on different data type with performance on
MPRAGE image.

We apply segmentation on 8 MRIs of normal subjects and plot the combined his-
togram values of mean kurtosis(MK) for each segment, the results of which are
shown in Figure 5. The peaks of the histogram are aligned with each other. More
interestingly, the MK histogram indicates a narrow distribution of MK values of all
three tissue types, reflective of likely more accurate tissue classification using the
shape based method.

The full result of classification is shown in Table 1. K-means applied on combined
DT and KT performs best with 77% match with the MPRAGE tissue classification.
GMM produces good results when the CSF, GM, and WM have distinct density
peaks. However, the distribution of each tissue type varies in each MRI and some-
times causes GMM to select a distribution that does not correspond to CSF, GM
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or WM. As the K-means algorithm searches for centroids and is geometric in na-
ture, it provided better classification compared to the other techniques because the
geometric properties of the tensors are closely tied to the underlying tissue types.

Volume Ratio
Segmentation Type CSF Mean CSF STD GM Mean GM STD WM Mean WM STD
GMM on MK 0.129 0.112 0.638 0.177 0.231 0.076
GMM on MD and MK 0.244 0.064 0.408 0.230 0.347 0.240
K-means on MD and MK 0.267 0.025 0.440 0.016 0.272 0.016
GMM on RI DT/KT 0.248 0.070 0.415 0.130 0.335 0.134
K-means on RI KT 0.251 0.029 0.448 0.015 0.286 0.020
K-means on RI DT/KT 0.126 0.035 0.508 0.028 0.363 0.017
MPRAGE 0.148 0.026 0.491 0.026 0.359 0.012

Table 2 A comparison of various segmentation methods with MPRAGE based classification. Vol-
ume ratio, which is a ratio between volume occupied by a tissue and the volume of the whole brain,
is calculated for each tissue type.

The volume ratio of a given tissue type is the ratio between the volume occupied
by that tissue and the volume of the entire brain. We calculate the volume ratio for
all three tissue types. The volume ratios of different tissue types using our shape
based segmentation and MPRAGE segmentation are shown in Table 2. We compare
these with the volume ratios for MRI data from healthy subjects. K-means applied
on combined DT/KT performs close to the MPRAGE tissue classification. As men-
tioned before, when there are no distinct density peaks, the output of the GMM
algorithm degrades.

Fig. 6 Result of applying K-means (with k= 4) segmentation to differentiate CSF (grey), GM
(green), and WM (blue) along with extreme kurtosis values (red). The area surrounding the injury
site has very high kurtosis values. The representative DKI glyph for each segment is also shown.

6.3 Representative Shape

After classifying various segments, we compute a representative shape for each seg-
ment for analysis and lighting in visualization. We determine a representative shape
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for lighting by using the mean value for each group based on attributes used for
grouping. The voxel most closely representing the mean is chosen to represent the
shape function. Figure 6 shows the segmentation performed on the DKI image of a
patient with traumatic brain injury (TBI) using K-means (with k= 4) and the rep-
resentative shape for each segment. The regions around the injury, as shown in red,
have extreme kurtosis values, depicted by their elongated shapes.

7 Visualization

In a previous paper [2], we used spherical harmonics lighting functions to analyze
and visualize spatio-angular fields, such as diffusion and kurtosis tensors. Dynamic
spherical harmonics lighting functions, which have unique directional shapes and
sizes, are used as a query tool to illuminate the spatio-angular field and visualize the
underlying structure. The output of the system is either a planar visualization or a
volume rendering. In this work, our system uses the same tool with added support
for visualizing segmented regions.

(a) (b)

Fig. 7 Shape-based classification using K-means segmentation (with k = 3) on the spherical har-
monics approximation of diffusion and kurtosis tensors. Figure 7(a) shows segmentation into CSF
(grey), WM (blue), and GM (green) on a normal subject. In Figure 7(b), we use the MRI of an
injured patient. The segments show the injured region (red), WM (blue), and GM (green).

7.1 Planar Visualization

For planar visualization, we have several ways of visualizing the data. One direct
way is to map segment identifiers to specific colors using a transfer function; this
visualization mode allows easy identification of various segments. Although this
method is straightforward, one needs to be careful in color assignment for differ-
ent segment identifiers so that coloring across MRIs is consistent, as the segment
identifiers from GMM or K-means can stochastically change for every run of the
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algorithm. An example visualization is shown in Figure 7, comparing the MRI of a
normal subject and an injured patient. For segmentation, shape-based classification
using K-means segmentation (with three segments) on spherical harmonics approx-
imations of the diffusion and kurtosis tensors is performed. Figure 7(a) shows the
MRI segmentation of a normal subject, where segments relate to CSF (grey), WM
(blue), and GM (green). In Figure 7(b), we use the MRI segmentation of a patient
suffering from traumatic brain injury, in which segments show the injured region
(red), WM (blue), and GM (green).

Fig. 8 The difference between lighting using a regular lighting function (left) and a local repre-
sentative light (right). Using the representative glyph to light the volume field will exaggerate local
differences, as seen in the second image.

7.2 Planar Visualization using Representative Shapes

The second form of planar visualization uses local shape-based lighting. In our pre-
vious work [2], lighting functions were used to illuminate spatio-angular fields to
show the structural properties of the underlying tissues. The lighting functions can
be modified or rotated to allow active exploration of the dataset. Most lighting func-
tions used were pre-defined shapes. However, lighting functions do not have to be
constrained to pre-defined shapes. In the previous section, we computed the rep-
resentative shape for each cluster; using these shapes, each voxel can be lit by its
group’s representative shape, as shown in Figure 8. With this lighting, a higher value
characterizes the close approximation between the shape of the spherical harmonic
voxel field and its representative shape, which is similar to the degree of member-
ship used in segmentation.

7.3 Volume Visualization of Segments

For volume visualization of the segmented data, we map the segment identifiers to
color and opacity using a transfer function. After the MRI dataset is segmented,
we create a scalar field using the segment identifiers. This field is used in volume
rendering to perform a lookup of the transfer function. Based on the user preference,
the opacity of the selected segment is increased while making other segments semi-
transparent. In Figure 9, we show the output of our volume visualization of the
segmented MRI.
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(a) (b) (c)

Fig. 9 The volume visualization of the segmented brain. The transfer function that maps the seg-
ment identifiers into color and opacity is automatically created based on segments selected by the
user. In this example, the whole brain is classified into 3 segments (CSF, GM, and WM), as shown
in the images.

Fig. 10 The volume visualization of the spatio-angular field. Using an additional transfer function,
only spatio-angular fields of selected segments are displayed. The lighting function, shown to the
right of the image, is used to explore the directional strength of the spatio-angular field. As the user
rotates the lighting function, a different direction is queried.

7.4 Volume Visualization of Spatio-Angular Fields

We use the framework, described in our previous work [2], to visualize spatio-
angular fields and to display segmented data. In particular, we use two transfer
functions. The first transfer function converts light response values to color and
opacity as described in [2]. The second transfer function determines opacity based
on the segments the user selects. By using both transfer functions at the same time,
we allow the user to view the spatio-angular field of only the selected segments. In
Figure 10, the spatio-angular field of the segment related to the injury is visualized.
By rotating the lighting function (shown to the right side of the figure), users can
interact with the spatio-angular field.
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8 Application

(a) GMM Normal Subject (b) GMM TBI Patient (c) GMM Frontal Lobe
Damage Patient

(d) K-means Normal Sub-
ject

(e) K-means TBI Patient (f) K-means Frontal
Lobe Damage Patient

Fig. 11 A visual comparison between segmentation performed using domain-specific attributes
and shape-based attributes. For segmentation based on domain-specific attributes, GMM is used,
and for shape-based attributes, K-means is used. In the entire segmentation, we find three dif-
ferent segments. In Figure 11(a) and Figure 11(d), the MRI of a normal subject is used. In Fig-
ure 11(b) and Figure 11(e), the MRI of a patient suffering from TBI is shown. In Figure 11(c)
and Figure 11(f), the MRI of a patient with frontal lobe damage is used. Shape-based classifica-
tion captures the underlying properties of the tissues much better than segmentation created using
domain-specific attributes.

8.1 Visual Comparison

We visually compare results after applying different segmentation strategies. Since
GMM performed well when segmentation was based on domain-specific attributes
and K-means produced the best results when shape-based attributes were used, we
visually compare these two results with each other. We apply segmentation to find
three segments on the MRIs of both a normal patient and a patient with an injury,
as shown in Figure 11. The top row shows segmentation using domain-specific at-
tributes, whereas the bottom row shows segmentation using shape-based attributes.
Both segmentation strategies are able to distinguish basic segments, including in-
jury. However, shape-based classification is able to capture the underlying prop-
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erties of the tissues much better than segmentation done in with domain-specific
attributes.

(a) k = 2 (b) k = 3 (c) k = 4 (d) k = 5

(e) k = 2 (f) k = 3 (g) k = 4 (h) k = 5

Fig. 12 A visual comparison of different segmentation strategies when the number of segments is
varied for different MRI datasets. The top row uses the MRI of a normal subject and in the bottom
row we use the MRI of a patient who is suffering from traumatic brain injury (TBI). Each segment
in these images is colored differently. There is no relation between the coloring of segments for the
normal subject and the patient suffering from traumatic brain injury.

8.2 Segment Count Variation

In classification by shape-based attributes, we tested how increasing the number of
segments affects classification. In Figure 12, we show the output of segmentation
using two datasets. In the MRI of the normal patient, which is shown in the top
row of Figure 12, CSF, GM, and WM are clearly segmented when the number of
segments is 3. As the number is further increased, subdivision within GM and CSF,
occurred as seen in Figure 12(c) and Figure 12(d). In the case of the patient suffer-
ing from TBI, the region around the injury is clearly visible when the number of
segments is greater than 3, as seen in Figure 12(g) and Figure 12(h).

In most of the examples of an MRI of a normal subject, we classify the entire brain
into CSF, GM, and WM. For these classifications k≤ 3 is used. CSF, GM, and WM
are structurally different; thus they have distinct diffusion profiles. In classifying a
brain with an injury, we use k ≤ 4 as we are dealing with four structurally distinct
regions: CSF, GM, WM, and injury. If k > 4 is used, these regions are further clas-
sified. Additional study and evaluations are needed for these type of classifications.
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(a) Planar Visualization (b) Volume Visualization

Fig. 13 The visualization of segmentation done on the MRI of a patient suffering from a traumatic
brain injury. Shape-based classification was performed using K-means segmentation (with k = 3)
on spherical harmonics approximation of diffusion and kurtosis tensors. The segment relating to
the injury is shown in red.

8.3 Traumatic Brain Injury

We apply segmentation to the MRI of a patient suffering from traumatic brain injury.
We used K-means segmentation with k = 3 on spherical harmonics approximations
of diffusion and kurtosis tensors. In Figure 13, the output of the segmentation is
shown. The segmentation process is able to segment out the region around the injury
(red) from other regions, such as WM (blue) and GM (green).

(a) (b) (c) (d)

Fig. 14 The visualization of segmentation done on the MRI of a patient with frontal lobe damage.
Shape-based classification was performed using K-means segmentation (with k = 4) on spherical
harmonics approximations of diffusion and kurtosis tensors. Figure 14(a) and Figure 14(b) are
from an MRI taken 8 days after the injury. The patient showed a remarkable recovery at a one
month follow-up after the injury, shown in Figure 14(c) and Figure 14(d). The red region shows an
area of high diffusion, and the blue region shows white matter. The changes in the red region can
be observed easily.
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8.4 Frontal Lobe Injury

In the injury case shown in Figure 14, the patient has sustained frontal lobe damage.
We segment the MRI dataset using K-means segmentation (with k = 4) on spheri-
cal harmonics approximation of diffusion and kurtosis tensors. The region in blue
is associated with white matter; the region in red is related to areas with high dif-
fusion. Right after the injury, a high diffusion region was observed in the frontal
lobe, which is normally occupied by white matter, as shown in Figure 14(a) and
Figure 14(b). After a month, some noticeable changes in the high diffusion region
can be observed, as shown in Figure 14(c) and Figure 14(d). This aligns with the
clinical diagnosis, as the patient made an significant recovery within month.

9 Conclusion And Future Work

We present a study on the classification of brain tissues using Gaussian and non-
Gaussian diffusion profiles acquired from DKI. MRI classification and visualization
are vital tools for medical professionals who treat patients suffering from brain dis-
eases and injuries. The shape of both diffusion and kurtosis tensors provides impor-
tant characteristics of the underlying tissues, which can be used to classify various
tissue types, as shown in our study. We apply multiple segmentation strategies and
compare them with the industry standard MPRAGE imaging. We also presente a
way to display the segmented data effectively in planar and in volume visualization
modes.

In the future, we plan to extend the utility of our tool to automatically segment
various disease biomarkers in the human brain to study inflammation and neurode-
generation. We also hope to include data from other forms of imaging to further
improve classification.
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